• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Artificial muscles powered by glucose

Bioengineer by Bioengineer
June 19, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Thor Balkhed/Linköping University

Artificial muscles made from polymers can now be powered by energy from glucose and oxygen, just like biological muscles. This advance may be a step on the way to implantable artificial muscles or autonomous microrobots powered by biomolecules in their surroundings. Researchers at Linköping University, Sweden, have presented their results in the journal Advanced Materials.

The motion of our muscles is powered by energy that is released when glucose and oxygen take part in biochemical reactions. In a similar way, manufactured actuators can convert energy to motion, but the energy in this case comes from other sources, such as electricity. Scientists at Linköping University, Sweden, wanted to develop artificial muscles that act more like biological muscles. They have now demonstrated the principle using artificial muscles powered by the same glucose and oxygen as our bodies use.

The researchers have used an electroactive polymer, polypyrrole, which changes volume when an electrical current is passed. The artificial muscle, known as a “polymer actuator”, consists of three layers: a thin membrane layer between two layers of electroactive polymer. This design has been used in the field for many years. It works by the material on one side of the membrane acquiring a positive electrical charge and ions being expelled, causing it to shrink. At the same time, the material on the other side acquires a negative electrical charge and ions are inserted, which causes the material to expand. The changes in volume cause the actuator to bend in one direction, in the same way that a muscle contracts.

The electrons that cause motion in artificial muscles normally come from an external source, such as a battery. But batteries suffer from several obvious drawbacks: they are usually heavy, and need to be charged regularly. The scientists behind the study decided instead to use the technology behind bioelectrodes, which can convert chemical energy into electrical energy with the aid of enzymes. They have used naturally occurring enzymes, integrating them into the polymer.

“These enzymes convert glucose and oxygen, in the same way as in the body, to produce the electrons required to power motion in an artificial muscle made from an electroactive polymer. No source of voltage is required: it’s enough simply to immerse the actuator into a solution of glucose in water”, says Edwin Jager, senior lecturer in Sensor and Actuator Systems, in the Department of Physics, Chemistry and Biology at Linköping University. Together with Anthony Turner, professor emeritus, he has led the study.

Just as in biological muscles, the glucose is directly converted to motion in the artificial muscles.

“When we had fully integrated enzymes on both sides of the actuator and it actually moved – well, it was just amazing”, says Jose Martinez, a member of the research group.

The next step for the researchers will be to control the biochemical reactions in the enzymes, such that the motion can be reversible for many cycles. They have already demonstrated that the motion is reversible, but they had to use a small trick to do so. Now they want to create a system that is even closer to a biological muscle. The researchers also want to test the concept using other actuators as the “textile muscle”, and apply it in microrobotics.

“Glucose is available in all organs of the body, and it’s a useful substance to start with. But it is possible to switch to other enzymes, which would enable the actuator to be used in, for example, autonomous microrobots for environmental monitoring in lakes. The advances we present here make it possible to power actuators with energy from substances in their natural surroundings”, says Edwin Jager.

###

The research has been funded with support of, among other bodies, Linköping University, the Carl Trygger Foundation, the Swedish Research Council, and EU Marie Curie Actions Initial Training Network “MICACT”.

The article: “Artificial muscles powered by glucose”, Fariba Mashayekhi Mazar, Jose G. Martinez, Manav Tyagi, Mahdi Alijanianzadeh, Anthony P.F. Turner, Edwin W. H. Jager, (2019), Advanced Materials, published online 19 June 2019: doi: 10.1002/adma.201901677
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201901677

Media Contact
Edwin Jager
[email protected]

Original Source

https://liu.se/en/news-item/konstgjorda-muskler-som-drivs-av-glukos

Related Journal Article

http://dx.doi.org/10.1002/adma.201901677

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025
Mastering the “Troublesome” Oxygen

Mastering the “Troublesome” Oxygen

October 1, 2025

New AI Technology Revolutionizes Visualization Inside Fusion Energy Systems

October 1, 2025

Urban Air Harbors Pathogenic Yeast Strains Absent from Coastal Areas

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    62 shares
    Share 25 Tweet 16
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

POLD3 Knockdown Impacts Low-Grade Glioma

Examining Qifu Yixin for Heart Failure Treatment

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.