• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 27, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Arctic shrubs add new piece to ecological puzzle

Bioengineer by Bioengineer
February 1, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Implications for carbon exchange in a warming, drying tundra

IMAGE

Credit: Eric Post, UC Davis

A 15-year experiment on Arctic shrubs in Greenland lends new understanding to an enduring ecological puzzle: How do species with similar needs and life histories occur together at large scales while excluding each other at small scales? The answer to this question has important implications for how climate change might shift species’ distributions across the globe.

The study was published today in the journal PNAS and led by the University of California, Davis. Its findings also reveal trends related to carbon sequestration and carbon exchange as the Arctic becomes both greener and browner.

EXPANSION AND EXCLUSION

Like lines of traffic traveling the same roads at the same time without crashing into each other, dwarf birch and gray willow dominate the Arctic landscape, covering and overlapping the same expansive territory, yet excluding each other in nearly indistinguishable microhabitats.

The study suggests that climate and species interactions work together to promote the shrubs at large scales while also promoting their exclusion at small scales. In this case, herbivory by caribou and muskoxen tips the balance in favor of one species or another at small scales but favors their co-occurrence at large scales.

This question of species diversity and co-occurrence versus exclusion has roots in a seminal paper in 1958 by Robert H. MacArthur that is taught in community ecology classes across the world. In that study, five species of warblers in the northeastern United States were observed avoiding each other while making their livings on different parts of the same tree — some preferring upper or middle branches, others the ground or trunk, for example.

“This is one of the most readily observable phenomena in nature,” said lead author Eric Post, director of the UC Davis Polar Forum and a professor in the Department of Wildlife, Fish and Conservation Biology. “Yet what influences species co-variation at both scales is something ecologists have argued about for decades. Our study shows that the same factors can act at both large and small scales with opposite effects on co-occurrence and exclusion. It’s fascinating.”

BRINGING THE HEAT, EXCLUDING CARIBOU AND MUSKOXEN

For the study, the authors conducted the 15-year experiment at Post’s long-time field site in Greenland. There, they recorded how arctic shrub abundance and composition changed in response to experimental warming treatments and to a treatment that fenced off large sections of tundra to exclude herbivores, such as caribou and muskoxen.

The experiment confirmed what recent theoretical work has suggested: physical conditions, such as climate, combine with species interactions to shape opposing patterns of variation among arctic shrubs at large and local scales.

CLIMATE AND CARBON EXCHANGE

The Arctic is becoming warmer and, in many places, drier. Those conditions favor willow over dwarf birch, the study found, even though birch are more abundant at the study site. While the absence of large herbivores favors almost complete exclusion of willow by birch, warming under those conditions swings the pendulum back slightly in favor of willow. Work in progress at the site also indicates changes in numbers of caribou and muskoxen, suggesting that muskoxen may be driving the balance between willows and birch under warming.

How willow and birch react to such changes will affect how much carbon can be stored. The more shrubs in the Arctic, the more carbon is absorbed from the atmosphere. A diversity of species across the tundra provides a more efficient carbon sponge that just one dominant species of shrub.

“Woody shrubs are expanding across many, but not all, regions of the treeless arctic tundra in what’s referred to as ‘arctic greening,'” Post said. “We’re witnessing the transformation of a sensitive biome right beneath our feet.”

This work suggests that large herbivores can interact with warming-driven shrub expansion in complex ways, potentially shaping the carbon landscape.

###

The study’s co-authors include Sean Cahoon of the USDA Forest Service in Alaska, Jeffrey Kerby of Aarhus University in Denmark, Christian Pedersen of the Norwegian Institute of Bioeconomy Research, and Patrick Sullivan of the University of Alaska in Anchorage.

The study was funded by the National Geographic Society, NASA and the U.S. National Science Foundation.

Media Contact
Kat Kerlin
[email protected]

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI

February 27, 2021
IMAGE

When foams collapse (and when they don’t)

February 27, 2021

UTA researcher explores effects of trauma at the cellular, tissue levels of the brain

February 26, 2021

Picture books can boost physical activity for youth with autism

February 26, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceMedicine/HealthcancerInfectious/Emerging DiseasesEcology/EnvironmentMaterialsCell BiologyClimate ChangeBiologyGeneticsPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Picture books can boost physical activity for youth with autism
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In