• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Arctic Ocean acidification worse than previously expected

Bioengineer by Bioengineer
June 17, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © National Oceanic and Atmospheric Administration NOAA

The Arctic Ocean will take up more CO2 over the 21st century than predicted by most climate models. This additional CO2 causes a distinctly stronger ocean acidification. These results were published in a study by climate scientists from the University of Bern and École normale supérieure in Paris. Ocean acidification threatens the life of calcifying organisms – such as mussels and “sea butterflies” – and can have serious consequences for the entire food chain.

The ocean takes up large amounts of man-made CO2 from the atmosphere. This additional CO2 causes ocean acidification, a process that can already be observed today. Ocean acidification particularly impacts organisms that form calcium carbonate skeletons and shells, such as molluscs, sea urchins, starfish and corals. The Arctic Ocean is where acidification is expected to be greatest.

A study that was recently published in the scientific journal Nature by Jens Terhaar from Bern and Lester Kwiatkowski and Laurent Bopp from the École normale supérieure in Paris shows, that ocean acidification in the Arctic Ocean is likely to be even worse than previously thought. The results show that the smallest of the seven seas will take up 20% more CO2 over the 21st century than previously expected, under the assumption that the atmospheric CO2 concentrations continue to increase. “This leads to substantially enhanced ocean acidification, particularly between 200 and 1000 meters”, explains Jens Terhaar, member of the group for ocean modeling at the Oeschger-Centre for Climate Change Research at the University of Bern. This depth range is an important refuge area for many marine organisms.

Consequences for the food chain

Ocean acidification negatively impacts organisms that build calcium carbonate skeletons and shells. In sufficiently acidic waters, these shells become unstable and begin to dissolve. “Our results suggest that it will be more difficult for Arctic organisms to adapt to ocean acidification than previously expected”, says co-author Lester Kwiatkowski. A loss of these organisms is likely to impact the entire Arctic food chain up to fish and marine mammals.

New method improves projections

The international research team exploited the large divergence in simulated Arctic Ocean carbon uptake by current climate models. The researchers found a physical relationship across the models between the simulation of present-day Arctic sea surface densities and associated deep-water formation, with greater deep-water formation causing enhanced transport of carbon into the ocean interior and therefore enhanced acidification. Using measurements of Arctic sea surface density the research team was able to correct for biases in the models and reduce the uncertainty associated with projections of future Arctic Ocean acidification.

###

Oeschger Centre for Climate Change Research

The Oeschger Centre for Climate Change Research (OCCR) is one of the University of Bern’s strategic centres. It is a leading institution for climate research and brings together researchers from fourteen institutes and four faculties. The OCCR carries out interdisciplinary research that is at the forefront of climate science. The Oeschger Centre was founded in 2007 and is named after Hans Oeschger (1927-1998), a pioneer of modern climate research who worked at the University of Bern.

http://www.oeschger.unibe.ch

Publication: Terhaar et al.: Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature, 17. June 2020, https://doi.org/10.1038/s41586-020-2360-3

Media Contact
Jens Terhaar
[email protected]

Original Source

http://tinyurl.com/ArcticOceanAcidification

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2360-3

Tags: Climate ChangeClimate ScienceEarth ScienceFisheries/AquacultureMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Navigating Shadows: Treating Anorexia and C-PTSD

Curcuma longa Nanocomposites Combat Drug-Resistant Pathogens

Preoperative BMI Influences Outcomes in Infective Endocarditis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.