• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Antibody-drug conjugate shows efficacy against cell surface protein in neuroblastoma

Bioengineer by Bioengineer
March 13, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHOP researchers: This first-in-class immunotherapeutic approach could spawn new treatment options for neuroblastoma and other high-mortality childhood cancers

IMAGE

Credit: Children’s Hospital of Philadelphia

Physician-scientists in the Cancer Center at Children’s Hospital of Philadelphia (CHOP) have developed a preclinical, potent therapy attached to an antibody that targets a surface protein expressed in most childhood neuroblastomas, effectively killing cancer cells.

The researchers published their findings today in Science Translational Medicine.

“If there is an ultimate ‘bad guy’ of neuroblastoma cell surface proteins–present on most tumors, but not on healthy tissues, and also vulnerable to immunotherapeutic targeting–this just may be it,” said study leader Yael Mossé, MD, a pediatric oncologist and researcher at Children’s Hospital of Philadelphia (CHOP). “In 2008, we discovered mutations in the anaplastic lymphoma kinase (ALK) gene as the major cause of the inherited form of neuroblastoma and showed that these same mutations are present in about 14 percent of neuroblastoma tumors from patients with the most aggressive form of this disease. This established ALK as a druggable target in neuroblastoma and provided the rationale for the clinical development of ALK inhibition therapy. We now show that native ALK (in the absence of a mutation) is present on most neuroblastoma tumors, providing us with an exciting opportunity to target ALK in the majority of patients.”

Neuroblastoma, a pediatric cancer of the developing peripheral nervous system that usually occurs as a solid tumor in a child’s chest or abdomen, is the most common cancer in infants, and accounts for more than 10 percent of all childhood cancer deaths. Children with the high-risk form of the disease continue to have a poor prognosis, despite intensive drug therapy.

Mossé, along with other scientists in her lab, demonstrated that the ALK protein appears on the surface of most neuroblastoma cells and is not detectable on normal cells, indicating that ALK is a useful target for immunotherapy. Researchers worked with pharmaceutical colleagues to weaponize an antibody-drug conjugate (ADC), one of a rapidly growing class of anticancer agents. That ADC, called CDX-0125-TEI, combines a specific monoclonal antibody engineered to recognize ALK with a potent chemotherapy drug–an alkylating agent called thienoindole (TEI).

In cell cultures and animal models of neuroblastoma, the ADC-ALK approach killed neuroblastoma cells, with no discernible toxicity to healthy cells. “The goal of this approach is to harness the presence of ALK to precisely deliver a poison only to the cancer cell, without harming the healthy surrounding cells,” said Mossé.

“This study is proof of concept that the ALK protein is a good immunotherapy target and, as we optimize this approach for the clinic, has the potential to be useful for the majority of aggressive neuroblastomas and to minimize the harsh consequences of therapy,” said Mossé.

She added, “In addition, our research could have great relevance for other cutting-edge immunotherapeutic strategies, such as CAR T-cell therapy, that harness the immune system to kill cancer, and is currently showing tremendous efficacy in children with leukemia. Our new data support clinical development of an immunotherapy drug not just for neuroblastoma, but for other hard-to-cure childhood cancers expressing the ALK gene, including rhabdomyosarcomas.”

Over decades, CHOP clinicians and researchers have built one of the world’s leading programs in neuroblastoma. The Mossé laboratory is focused on the underlying molecular mechanisms by which ALK gene activation contributes to development and progression of pediatric neuroblastoma, and to identify targeted, less toxic cancer therapies for children with ALK-mediated disease.

###

Funding for this research was provided by the U.S. Department of Defense (award W81XWH-12-1-0486) with additional support from Kolltan Pharmaceuticals, Solving Kids’ Cancer and Braden’s Hope Foundation.

Yael P. Mossé, et al, “An antibody-drug conjugate directed to the ALK receptor demonstrates efficacy in preclinical models of neuroblastoma,” Science Translational Medicine, online March 13, 2019.

Children’s Hospital of Philadelphia: Children’s Hospital of Philadelphia was founded in 1855 as the nation’s first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals, and pioneering major research initiatives, Children’s Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country. In addition, its unique family-centered care and public service programs have brought the 564-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu

Media Contact
Amy Burkholder
[email protected]

Tags: BiotechnologycancerCell BiologyGenesGeneticsMedicine/HealthMolecular BiologyneurobiologyPediatricsPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

How Behavior Shapes Morphological Evolution in Primates

August 1, 2025
Experts Urge Stronger Governance for Climate Interventions to Protect Our Oceans

Experts Urge Stronger Governance for Climate Interventions to Protect Our Oceans

August 1, 2025

Cutting-Edge AI Reveals Hidden “Dark Side” of the Human Genome

August 1, 2025

Innovative mRNA Therapy Demonstrates Potential for Heart Regeneration Post-Heart Attack

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decelerated Protein Translation Accelerates Brain Aging in Killifish

Neuropsychiatric Risks Linked to COVID-19 Revealed

Glycerophospholipids’ Redox Role in Ferroptosis Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.