• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

An unnatural way to make natural products

Bioengineer by Bioengineer
June 11, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of South Florida

From medicine to fragrances, nature provides many of the key chemical compounds needed in an endless number of pharmaceuticals and consumer products. Now, a cutting-edge technique engineered by researchers at University of South Florida is changing the way scientists isolate these precious molecules.

“Plant natural products are already widely used across so many industries,” said Ramon Gonzalez, PhD, professor in the USF Department of Chemical & Biomedical Engineering and a Florida 21st Century World Class Scholar. “Taxus brevifolia, for example, the Pacific yew plant, contains molecules that are used to produce a chemotherapy drug for several cancer treatments. The problem is that many of these products are expensive and difficult to extract efficiently.”

Gonzalez and his research team focused their efforts on a class of plant natural products (PNPs) called isoprenoids. With more than 50,000 of these isoprenoids synthesized in nature, they represent one of the most structurally and chemically diverse classes of molecules known to man.

Lycopene, for example, is an isoprenoid that gives tomatoes and other red fruits and vegetables their color. Aside from its natural pigmentation, lycopene is can be taken to lower blood pressure, prevent heart disease and has even been shown to help prevent several types of cancer.

Citrus fruit peels also contain a type of isoprenoid called limonene. When extracted, limonene is used as the lemon or orange fragrance in cleaning products, or as a flavoring agent in different medications.

“Nature didn’t develop these pathways to efficiently produce these molecules for our use,” Gonzalez said. “These metabolic pathways serve their own function in these plants, and because of that it’s challenging to extract these isoprenoids in the amounts researchers would ideally like to. Not to mention the inherent cost and time required to cultivate the plants needed to extract the molecules from.”

To overcome this fundamental problem, Gonzalez and his team worked to develop an innovative new process for synthesizing isoprenoids. In essence, they have been able to create a synthetic metabolic pathway that will allow scientists to access these essential compounds in a controlled and efficient way.

Their work, published in the Proceedings of the National Academy of Sciences, outlines the team’s development of engineered microorganisms for synthesizing isoprenoids. By developing these microbes in a lab, researchers are able to modify their biological function and use the microbe’s metabolism as a pathway for biosynthesis.

Think of it like brewing beer. In beer, yeast metabolizes sugar to create the desired product – alcohol. For researchers, they leverage the microbe’s metabolism to produce different products – in this case, isoprenoids. By engineering what they call an isoprenoid alcohol pathway within the microbe, scientists are able to introduce a carbon source which passes through the pathway to produce isoprenoid molecules. The benefits are two-fold; not only do these advancements allow researchers the ability to synthesize isoprenoids in microbes directly, but the pathway itself is optimized to maximize efficiency.

“We believe our research will change the decades-long paradigm for isoprenoid biosynthesis, which until now had fully relied on engineering the two pathways existing in nature,” Gonzalez said. “It’s an exciting advancement that we feel will have wide ranging impacts on research happening around the world.”

###

Media Contact
Tina Meketa
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.1821004116

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyIndustrial Engineering/ChemistryMicrobiologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Psychological Resilience Mediates Care in Nursing Interns

MeaB bZIP Factor Essential for Nitrosative Stress Response

Revolutionizing Preterm Infant Care in Resource-Limited Settings

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.