• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, May 28, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

An ‘instruction’ to the crocodylian skull

Bioengineer by Bioengineer
July 6, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from St Petersburg University described for the first time all structures in the animal’s braincase, having studied more than 70 of their 3D models

IMAGE

Credit: SPbU

The braincase of crocodylians has a distinctive structure. Unlike evolutionary relatives (birds and squamates), in crocodylians, all braincase bones are rigidly fixed together and form an akinetic structure. In the process of evolution, this made it possible for animals to develop powerful jaws and stronger bite forces, thanks to which crocodylians could gnaw through the hard shell of crayfish and turtles and hunt fish and land animals, including dinosaurs. As a result, they have managed to fill the niche of predators and survive to the present day.

At present, in comparison with other parts of the crocodylian skull, the structure of their braincase has been understudied. This is because, until recently, scientists did not have the opportunity to investigate the complicated akinetic structure so that in the end the valuable collection specimen remained intact. At the same time, there is confusion in the already known data in terms and names. This complicates the work of many researchers studying the evolution of crocodylians.

Ivan Kuzmin, a doctoral student at St Petersburg University, decided to readdress this situation together with his colleagues from St Petersburg University, the Borissiak Paleontological Institute of the Russian Academy of Sciences, the Research and Practical Clinical Centre for Diagnostics and Telemedicine of the Moscow Department of Health, and the Smithsonian Institution (USA). To achieve this, they used computed tomography and a special 3D visualization program to create and study 3D models of 75 braincases of present-day crocodylians. This made it possible, without damaging the collection samples, to literally disassemble them by the bones and study every detail. Additionally, the researchers analysed academic papers describing the structure of the braincase from the beginning of the 19th century. The earliest work studied was an article dated 1821.

As a result, the scientists compiled a summary table in which they assigned a name to each structure in the crocodylian braincase. ‘Our paper is the first one in which this part of the skull is described in detail and a complete ordered list of all its details is provided. We have introduced some terms, for example, the names of bone processes in the auditory area. In some cases, because the structures were named incorrectly before us, in others, because we have discovered new elements,’ notes Ivan Kuzmin, the main author of the study, Master of Science from St Petersburg University.

While studying 3D models of braincases, the researchers found previously unknown evolutionary features. According to the scientists, recent data can help to better understand the structure of the crocodylian skeleton and resolve the contradictions around the genealogical tree of reptiles. The fact is that for almost 30 years, molecular biologists and paleontologists have been unable to agree on the sequence in which crocodylian species should be located on the evolutionary tree. For example, based on gene studies, molecular biologists assume that alligators are the most basal ones, while paleontologists, studying fossil remains, come to the conclusion that the most primitive ones are gharials. ‘In the future, we plan to conduct a phylogenetic analysis and, based on its results, resolve this conflict,’ says Ivan Kuzmin. ‘The initial assumptions show that molecular biologists might be right.’

During the research, the authors also found out through what developmental mechanisms the crocodylian braincase acquired an akinetic structure. The researchers compared the evolution of the braincase in fossil relatives of crocodylians (crocodylomorphs) with the development of the braincase in the embryos of present-day animals. They have found out that in the crocodylian braincase area, in contrast to lizards and birds, complimentary structures appear at the initial stages of ontogenesis.

‘Bones in an embryo are formed in two ways: endochondral and dermal. In the former case, cartilage first appears; then it ossifies. In the latter case, bones are formed as bones initially,’ explains Ivan Kuzmin. ‘Most of the braincase of all animals is formed by the endochondral process. However, it has turned out that everything happens differently in crocodylians. In addition to structures that are formed through endochondral ossification, they have new elements that are formed embryonically in the form of dermal ossifications. That is, new bone blocks that are missing in other animals are attached to the cartilaginous structures, as in the LEGO construction set. With further development of the embryo, cartilages are transformed into bones, and everything merges into a single structure. The same embryonic processes likely happened during the early stages of crocodylomorph evolution.’

###

Media Contact
Polina Ogorodnikova
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/joa.13490

Tags: BiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Virtual Biopsy set to Transform Heart Transplant Care

Virtual biopsy set to transform heart transplant care

May 28, 2022
Catalytic Coating

New light-powered catalysts could aid in manufacturing

May 27, 2022

Gene linked to severe learning disabilities governs cell stress response

May 27, 2022

Study reveals potential target for treatment of diseases associated with mitochondrial DNA mutations

May 27, 2022
Please login to join discussion

POPULAR NEWS

  • Masks

    Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11
  • Wearable mask allows vegetative patients to communicate by breathing

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsVehiclesUrbanizationZoology/Veterinary ScienceVaccineWeaponryViolence/CriminalsVirologyVaccinesUrogenital SystemUniversity of WashingtonVirus

Recent Posts

  • Virtual biopsy set to transform heart transplant care
  • Fastest carbon dioxide catcher heralds new age for direct air capture
  • Joint research revealed the importance of anthropogenic vapors on haze pollution over Hong Kong and Mainland China’s megacities
  • Seeing how odor is processed in the brain
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....