• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 23, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

An alternative to animal experiments

Bioengineer by Bioengineer
October 14, 2020
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New applications for organoids from human intestinal tissue

IMAGE

Credit: E. Rath / TUM

The human intestine is vital for both digestion and absorbing nutrients as well as drugs. For any type of research that involves intestines, scientists require research models that reflect the physiological situation inside human beings with the highest possible accuracy.

Standard cell lines and animal experiments have certain disadvantages. One main issue is the lack of applicability of the results to humans. Now, a multidisciplinary research team covering the areas of nutritional science, general medicine, and chemistry has demonstrated how a modern in vitro model – made from human intestinal biopsies – can answer various questions regarding the molecular processes inside the human gut.

Measuring nutrient and drug transport in the intestines

A few years ago, researchers Eva Rath and Tamara Zietek have already demonstrated some areas of application of intestinal organoids. These are microstructures similar to the gut, which possess utility for the scientific field examining the gastro-intestinal system.

For instance, these miniature intestines can serve as models for investigating hormone release and transport mechanisms of food or medication inside the digestive tract. Previously, these microstructures with their similarity to intestines were grown from mouse tissue. Now the team has found a way to apply this method to miniature intestines grown from human tissue, thereby expanding the methodological spectrum.

Organoids consist of so-called epithelial cells – a cell layer serving as barrier between the content of the bowels including the enteric flora, scientifically known as “microbiota”, and the inside of the body. These cells are not only responsible for absorbing nutrients and drugs; their metabolism has an effect on various functions in all parts of the body.

“Many molecular aspects of nutrient absorption in the intestines are still unknown. We do know, however, that some nutrient transporters also play a role in drug absorption,” explained Eva Rath, scientist at the Chair of Nutrition and Immunology at TUM.

In their latest publication, the researchers illustrate how the transport of nutrients and drugs and the subsequent metabolic changes can be measured in organoids. “This paves the way for this model to be used in medical and pharmaceutical applications such as drug screening,” Rath added.

A better alternative to animal experiments

“When studying diseases or performing drug screenings, it is critical to have access to a human test system such as human organoids in order to prevent obtaining species specific test results,” said Tamara Zietek, who is part of the Chair of Nutritional Physiology at TUM.

She added that, “over the course of the last few years, organoids have become one of the most promising in vitro models due to their high physiological relevance; they also present a human-based alternative method to animal experiments.”

The processes established by the research team are of particular importance for both fundamental research and drug development, but also regarding regulation in terms of safety testing for chemicals and other agents.

###

Media Contact
Dr. Eva Rath
[email protected]

Original Source

https://www.tum.de/nc/en/about-tum/news/press-releases/details/36252/

Related Journal Article

http://dx.doi.org/10.3389/fbioe.2020.577656

Tags: Cell BiologyClinical TrialsEndocrinologyMedicine/HealthMetabolism/Metabolic Diseases
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

New maintenance treatment for acute myeloid leukemia prolongs the lives of patients

January 22, 2021
IMAGE

Potential combined drug therapy for lung cancer

January 22, 2021

University of Cincinnati student uses zebrafish to study spinal deformities

January 22, 2021

Addressing the impact of structural racism on disparities in children with Type 1 diabetes

January 22, 2021
Next Post
IMAGE

Over 150 million websites among a billion tested include sensitive (and tracked) content

IMAGE

WVU partners with the CDC to conduct mask observation study, reports encouraging baseline results

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In