• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Alzheimer protein APP regulates learning and social behavior in the healthy brain

Bioengineer by Bioengineer
May 19, 2021
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Beyond plaques: Heidelberg scientists unravel the natural functions of the APP protein family

IMAGE

Credit: Susanne Klein, Prof. Müller’s research group, Heidelberg University

While the APP protein is well-known for its key role in Alzheimer’s disease, its contribution to healthy brain function, by contrast, has remained largely unknown until now. Recently, an international research team, led by molecular biologist Prof. Dr Ulrike Müller from Heidelberg University, gained new insights on the physiological functions of the APP protein family by using a mouse model lacking APP. The absence of APP during brain development was shown to result in the malformation of important brain regions implicated in learning and memory. Consequently, these mice were severely impaired in their learning abilities and exhibited autistic-like behaviour.

Alzheimer’s disease is triggered by insoluble protein deposits in the brain, which aggregate around nerve cells to form plaques. These plaques consist mainly of small β-amyloid peptides (Aβ), which are a cleavage product of the amyloid precursor protein (APP). Aβ peptides inflict damage on nerve cells and ultimately lead them to their death. While the detrimental effect of Aβ peptides on neurons has been recognised for many years, little is known about the natural physiological functions of APP. According to the researchers, this non-pathological perspective is worthy of investigation considering the fact that APP, as well as two other closely-related proteins, is produced by most nerve cells in the brain – particularly in critical regions for learning and memory formation.

To investigate the role of the APP protein family in the development and functionality of the nervous system, Prof. Müller’s research group used mice as a model organism, which had been genetically engineered to block the production of all APP family proteins. Close examination of their brains revealed that the loss of APP during brain development led to malformations in the layered structure of the hippocampus – an essential brain region for memory formation. “We observed that the absence of APP led to impaired neuronal wiring and a decrease in the number of synaptic connections. It also greatly reduced communication between nerve cells and severely affected the animal’s performance in behaviour tests that assess learning,” says Ulrike Müller, who heads the department of Functional Genomics at the Institute of Pharmacy and Molecular Biotechnology of Heidelberg University.

According to Prof. Müller, the team was surprised to discover that these disruptions in brain development also gave rise to behavioural changes that resembled those occurring in autism spectrum disorder. The mice displayed the characteristic recurring movement patterns and lack of interest in social interactions with other mice. “Our findings suggest that the APP family plays a crucial role in the normal development of the nervous system, learning, memory formation and social communication,” explains the scientist. “In the future, these understandings may aid the development of novel therapeutics for Alzheimer’s disease.”

###

Funded by the German Research Foundation, this study was an international collaborative effort involving the research team based in Heidelberg as well as scientists from Technische Universität Braunschweig, the University of Mainz, and the University of Zurich (Switzerland). The results were published in “The EMBO Journal“.

Media Contact
Ulrike Müller
[email protected]

Original Source

https://www.uni-heidelberg.de/en/newsroom/alzheimer-protein-app-regulates-learning-and-social-behaviour-in-the-healthy-brain

Related Journal Article

http://dx.doi.org/10.15252/embj.2020107471

Tags: AlzheimerBiologyBiotechnologyMolecular Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

July 30, 2025
Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

July 29, 2025

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

July 29, 2025

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

Processing Environments Shape Food-Related Antibiotic Resistome

Multi-Proteomic Analysis Reveals Host Risks in VZV

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.