• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Allergy, asthma risk are increased by microbial compound found in infant gut

Bioengineer by Bioengineer
July 22, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research ‘paves the way’ for early interventions to prevent childhood inflammatory diseases

A study of newborn infants has identified a compound produced by gut bacteria that appears to predispose certain infants to allergies and asthma later in life.

“We have discovered a specific bacterial lipid in the neonatal gut that promotes immune dysfunction associated with allergic asthma and can be used to assess which babies are at risk of developing the disease in childhood” said study senior author Susan Lynch, PhD, a professor of medicine at UCSF. “This finding paves the way for early-life gut microbiome interventions to prevent these diseases from developing.”

Lynch’s lab has previously shown that one-month-old infants with unhealthy gut microbial ecosystems — more like a weedy lot than a well-functioning garden — are at increased risk of developing asthma later in childhood. They have also shown that a specific fatty molecule, or lipid, called 12,13-diHOME, found at high concentrations in the feces of these babies, reduced the number and activity of a key group of immune cells called regulatory T cells (Tregs) that normally suppress allergic inflammation.

In their newest study, published July 22, 2019 in Nature Microbiology, research led by MD/PHD candidate Sophia Levan set out to test whether this bacterial molecule might directly drive the risk of asthma and allergy in young infants. First, they showed that injecting 12,13-diHOME into the gut of mice reduced Treg cell numbers in the animals’ lungs, and that this molecule alters Treg and other immune cell function at a molecular level.

To understand where this pro-inflammatory lipid was coming from, the researchers studied the microbial genes present in stool samples from 41 one-month old infants collected as part of the racially and ethnically diverse WHEALS (Wayne County Health, Environment, Allergy and Asthma Longitudinal Study) cohort in Detroit. They found that the number of copies of three bacterial genes for 12,13 DiHOME or the concentration of the lipid itself in the babies’ stool samples predicted which infants went on to develop allergy by age two or asthma by age four. They then replicated this finding in the stool samples of an independent cohort of 50 one-month-olds based in San Francisco.

“While these findings need to be replicated in an even larger study group, the fact that these two cohorts collected in demographically different populations in very different cities showed the same results gives us confidence that the association between this bacterial lipid and childhood asthma and allergy risk may generalize to a broader population,” Levan said.

The researchers emphasize that 12,13-diHOME is likely just one of many microbial-derived products that contribute to early-life immune dysfunction and susceptibility to childhood allergy and asthma.

“This is likely just one component of a complex microbiome-immune interaction in young infants that promotes allergy and asthma development in childhood,” Lynch said. “But it is a first step towards a more mechanistic understanding of the suite of microbial products that increase susceptibility to allergies and asthma during childhood.”

###

The researchers plan to pursue this finding to develop screening protocols to identify newborns at high risk for asthma and allergy based on the presence of this and other microbial molecules in their stool, as well as interventions that could reduce infants’ risk, either through therapies that reduce levels of these compounds or by promoting early life gut microbiomes that prevent production of such compounds.

Authors: Additional authors on the study were Kelsey A. Stamnes, Din L. Lin, Ariane R. Panzer, Elle Fukui, Katherine McCauley, Kei E. Fujimura, Michelle McKean, Homer A. Boushey, and Michael D. Cabana of UCSF; Dennis R. Ownby of Augusta University in Georgia; and Edward M. Zoratti and Christine C. Johnson of Henry Ford Health System in Detroit.

Funding: This research was funded by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (AI089473).

Disclosures: Lynch is cofounder of Siolta Therapeutics Inc., and serves as both a consultant and a member of its Board of Directors. The Regents of the University of California, UCSF have filed a provisional patent application (number 62/637,175) on behalf of Lynch and Levan relating to the research.

About UCSF: The University of California, San Francisco (UCSF) is exclusively focused on the health sciences and is dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes UCSF Health, which comprises three top-ranked hospitals, as well as affiliations throughout the Bay Area. Learn more at https://www.ucsf.edu, or see our Fact Sheet.

Follow UCSF
ucsf.edu | Facebook.com/ucsf | YouTube.com/ucsf

Media Contact
Nick Weiler
[email protected]

Tags: BacteriologyDevelopmental/Reproductive BiologyMedicine/HealthParenting/Child Care/FamilyPediatrics
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Trametes NF1 Boosts Alfalfa Growth Under Saline Stress

August 5, 2025
blank

New Trematode Species Found in Mediterranean Cardinal Fish

August 5, 2025

Ultrasound L-Lysine Boosts Pork Color Stability

August 5, 2025

Effortless Weight Loss: Achieving Results Without Nausea

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Solid Solvation Boosts All-Solid-State Organic Batteries

Trametes NF1 Boosts Alfalfa Growth Under Saline Stress

Necrotizing Fasciitis Fatality in Casted Arm Uncovered

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.