• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Algae-killing viruses spur nutrient recycling in oceans

Bioengineer by Bioengineer
July 18, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rutgers-led team confirms an important role for viruses that infect algae in marine waters

IMAGE

Credit: Jeffrey Krause and Eric Lachenmyer

Scientists have confirmed that viruses can kill marine algae called diatoms and that diatom die-offs near the ocean surface may provide nutrients and organic matter for recycling by other algae, according to a Rutgers-led study.

The study in the journal Nature Microbiology also revealed that environmental conditions can accelerate diatom mortality from viral infection, which is important for understanding how diatoms influence carbon cycling and respond to changes in the oceans, including warming waters from climate change. Diatoms, which are single-celled algae that generate about 20 percent of the Earth’s oxygen, help store carbon dioxide, a key greenhouse gas, in the oceans.

“To our knowledge, this is the first time different stages of infection have been diagnosed in natural diatom populations and suggests that diatom populations may be terminated by viruses,” said senior author Kim Thamatrakoln, associate research professor in the Department of Marine and Coastal Sciences at Rutgers University-New Brunswick. “Our study showed that when silicon levels in the ocean are low, diatoms can be more rapidly infected and killed by viruses and are then more likely to release their nutrients and other matter in the surface ocean instead of sinking.”

Since the Victorian era, diatoms have been known as the “glass houses of the sea” because of their beautiful cell walls made of silicon dioxide, or glass. Silicon is essential for diatom growth, but since glass is heavy, diatoms can sink to the deep ocean when they die. That makes all of their nutrients, carbon and organic matter unavailable for surface recycling by other algae that need sunlight only available in the upper ocean.

Diatoms are infected by the smallest viruses on Earth and were once believed to be immune because of their glass-based armor. Such viruses have long escaped detection by traditional methods and very little was known about how they affect diatoms. So, the scientists studied what drives and ends diatom blooms in the California Current, a Pacific Ocean current that flows southward along the coast. The scientists found distinct areas ranging from uninfected diatom populations to highly infected populations.

They also found that some populations had undergone a die-off and the level of silicon was the strongest predictor of viral infection. Diatoms take up dissolved silicon from the environment and turn it into glass for their cell walls. But most of the surface waters where diatoms live have low silicon levels, so these findings suggest viral infection may play an important role in controlling diatom populations globally.

The lead author is Chana F. Kranzler, a Simons Foundation post-doctoral fellow in Thamatrakoln’s lab. Co-authors include Rutgers undergraduate student William P. Biggs; Professor Kay D. Bidle in the Rutgers Department of Marine and Coastal Sciences; and scientists at Woods Hole Oceanographic Institution, the University of California and University of South Alabama.

Media Contact
Todd Bates
[email protected]

Original Source

https://news.rutgers.edu/algae-killing-viruses-spur-nutrient-recycling-oceans/20190717#.XS9n47xKi70

Related Journal Article

http://dx.doi.org/10.1038/s41564-019-0502-x

Tags: BiologyCell BiologyClimate ChangeEcology/EnvironmentEnvironmental HealthFisheries/AquacultureMarine/Freshwater BiologyOceanographyVirology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

New Study Reveals Mysterious ‘Ghost’ of the Australian Bush

September 5, 2025
blank

Novel Mangrove-Derived Streptomyces Reveals Biosynthetic Potential

September 5, 2025

CRISPR-Cas9 Techniques for Editing Non-Model Insects

September 5, 2025

Rapid Brain Growth Could Unlock How Humans and Marmosets Learn to Talk

September 4, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addressing Emerging Pollutants in China: An In-Depth Review of Current Challenges, Knowledge Gaps, and Strategic Solutions

Microwave-Assisted Synthesis of Biomass-Derived N-Doped Carbon Dots Advances Metal Ion Sensing Technology

Enduring Benefits of OR Shadowing for New Nurses

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.