• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, May 19, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

AI-designed protein awakens silenced genes, one by one

Bioengineer by Bioengineer
March 4, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By combining CRISPR technology with a protein designed with artificial intelligence, it is possible to awaken individual dormant genes by disabling the chemical “off switches” that silence them. Researchers from the University of Washington School of Medicine in Seattle describe this finding in the journal Cell Reports.

Ruohola-Baker Lab

Credit: Thatcher Heldring/UW Medicine Institute for Stem Cell and Regenerative Medicine

By combining CRISPR technology with a protein designed with artificial intelligence, it is possible to awaken individual dormant genes by disabling the chemical “off switches” that silence them. Researchers from the University of Washington School of Medicine in Seattle describe this finding in the journal Cell Reports.

The approach will allow researchers to understand the role individual genes play in normal cell growth and development, in aging, and in such diseases as cancer, said Shiri Levy, a postdoctoral fellow in UW Institute for Stem Cell and Regenerative Medicine (ISCRM) and the lead author of the paper.

“The beauty of this approach is we can safely upregulate specific genes to affect cell activity without permanently changing the genome and cause unintended mistakes,” Levy said.

The project was led by Hannele Ruohola-Baker, professor of biochemistry and associate director of ISCRM. The AI-designed protein was developed at the UW Medicine Institute for Protein Design (IPD) under the leadership of David Baker, also a professor of biochemistry and head of the IPD.

The new technique controls gene activity without altering the DNA sequence of the genome by targeting chemical modifications that help package genes in our chromosomes and regulate their activity. Because these modifications occur not in, but on top of genes, they are called epigenetic, from the Greek epi “over” or “above” the genes. The chemical modifications that regulate gene activity are called epigenetic markers. 

Scientists are particularly interested in epigenetic modifications because not only do they affect gene activity in normal cell function, epigenetic markers accumulate with time, contribute to aging, and can affect of the health of future generations as we can pass them on to our children. 

In their work, Levy and her colleagues focused on a complex of proteins called PRC2 that silences genes by attaching a small molecule, called a methyl group, to a protein that packages genes called histones. These methyl groups must be refreshed so if PRC2 is blocked the genes it has silenced. it can be reawakened. 

PRC2 is active throughout development but plays a particularly important role during the first days of life when embryonic cells differentiate into the variouscell types that will form the tissues and organs of the growing embryo. PRC2 can be blocked with chemicals, but they are imprecise, affecting PRC2 function throughout the genome. The goal of the UW researchers was to find a way to block PRC2 so that only one



Journal

Cell Reports

DOI

10.1016/j.celrep.2022.110457

Method of Research

Experimental study

Subject of Research

Cells

Article Title

dCas9 fusion to computer-designed PRC2 inhibitor reveals functional TATA box in distal promoter region

Article Publication Date

1-Mar-2022

COI Statement

Shiri Levy, Hannele Ruohoia Baker, and David Baker are co-inventors on US patent application no. 17/434,832. Shiri Levyis a founder and stockholder at Histone Therapeutics Corp., a company that aims to develop inventions described in this manuscript. Karol Bomsztyk is a co-founder, board member, and equity holder of Matchstick Technologies, Inc., and the developer and maker of the PIXUL instrument.

Share12Tweet8Share2ShareShareShare2

Related Posts

Tom70-based transcriptional regulation of mitochondrial biogenesis and aging

Buck Scientist uncovers clues to aging in mitochondria

May 18, 2022
Potassium Supplementation in Hypokalemic Patients Receiving Peritoneal Dialysis

Maintaining normal serum potassium levels in peritoneal dialysis may reduce risk of peritonitis

May 18, 2022

Women who embraced their partner subsequently had lower stress-induced cortisol response

May 18, 2022

New weight-loss intervention targets instinctive desire to eat

May 18, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVirologyVehiclesZoology/Veterinary ScienceVaccinesUrogenital SystemUrbanizationWeaponryVirusVaccineViolence/CriminalsWeather/Storms

Recent Posts

  • Recycling more precious metals from nuclear and electronic waste using the Picasso pigment, Prussian blue
  • Buck Scientist uncovers clues to aging in mitochondria
  • Scripps Research awarded $67 million by NIH to lead new Pandemic Preparedness Center
  • NIAID announces antiviral drug development awards
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....