• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Aging-US: Sulforaphane promotes C. elegans longevity and healthspan

Bioengineer by Bioengineer
February 3, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

‘The results in this Aging-US research output, indicate that sulforaphane prolongs the lifespan and healthspan of C. elegans through insulin/IGF-1 signaling’

IMAGE

Credit: Correspondence to: Ingrid Herr email: [email protected]

Aging-US published “Sulforaphane promotes C. elegans longevity and healthspan via DAF- 16/DAF-2 insulin/IGF-1 signaling” which reported that the broccoli-derived isothiocyanate sulforaphane inhibits inflammation, oxidative stress and cancer, but its effect on healthspan and longevity are unclear.

The authors used the C. elegans nematode model and fed the wildtype and 9 mutant strains ±sulforaphane.

Sulforaphane increased the lifespan and promoted a health-related phenotype by increasing mobility, appetite and food intake and reducing lipofuscin accumulation.

Mechanistically, sulforaphane inhibited DAF-2-mediated insulin/insulin-like growth factor signaling and its downstream targets AGE-1, AKT-1/AKT-2. This was associated with increased nuclear translocation of the FOXO transcription factor homolog DAF-16. In turn, the target genes sod-3, mtl-1 and gst-4, known to enhance stress resistance and lifespan, were upregulated.

The results in this Aging-US research output, indicate that sulforaphane prolongs the lifespan and healthspan of C. elegans through insulin/IGF-1 signaling. They provide the basis for a nutritional sulforaphane-enriched strategy for the promotion of healthy aging and disease prevention.

Dr. Ingrid Herr from The University of Heidelberg said, “The risk of cancer, cardiovascular disease, and neurodegeneration rises dramatically later in life.”

Pak choy, which is one of the most widely consumed Brassica vegetables in Asian countries, have been reported to enhance antioxidant activity in a cell-free system and exert anti-aging effects in the nematode Caenorhabditis elegans.

C. elegans is one of the most widely used models for aging research due to its short lifespan of approximately 4 weeks and highly conserved key aging-related signaling molecules .

Here, the authors asked whether sulforaphane may influence the lifespan and healthspan of C. elegans.

They found that sulforaphane significantly extends the lifespan of C. elegans and delays age-related phenotype changes.

The analysis of wild-type C. elegans and 9 mutant strains revealed that sulforaphane inhibited DAF-2 insulin/insulin receptor signaling and thereby increased DAF-16 nuclear translocation, resulting in the expression of the sod-3, mtl-1 and gst-4 target genes, which are known mediators of longevity in C. elegans.

The Herr Research Team concluded in their Aging-US Research Paper, “we are the first to report that sulforaphane prolongs the lifespan and increases the healthspan of C. elegans through the inhibition of DAF- 2/insulin/IGF-1 signaling and the activation of DAF- 16/FOXO nuclear transcription in C. elegans. Our study provides a promising hint regarding the suitability of sulforaphane as a new anti-aging drug. However, additional studies in invertebrates and mammalian model organisms are necessary to expand our findings.”

###

Full Text – https://www.aging-us.com/article/202512/text

Correspondence to: Ingrid Herr email: [email protected]

Keywords: Caenorhabditis elegans, aging, sulforaphane, DAF-16 insulin

About Aging-US

Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research as well as topics beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, cancer, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR among others), and approaches to modulating these signaling pathways.

To learn more about Aging-US, please visit http://www.Aging-US.com or connect with @AgingJrnl

Aging-US is published by Impact Journals, LLC please visit http://www.ImpactJournals.com or connect with @ImpactJrnls

Media Contact

18009220957×105

[email protected]

Media Contact
Ryan James Jessup
[email protected]

Original Source

https://www.aging-us.com/news_room/sulforaphane-promotes-c-elegans-longevity-and-healthspan

Related Journal Article

http://dx.doi.org/10.18632/aging.202512

Tags: AgingBiologyBusiness/EconomicsEducationGerontologyMedicine/HealthPolicy/Ethics
Share12Tweet8Share2ShareShareShare2

Related Posts

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

August 23, 2025
blank

Ancient Skull Sheds Light on Plotopteridae Origins

August 23, 2025

Pollen, Karyotype, and Scent: Classifying Syringa Species

August 23, 2025

Aphid’s Long Proboscis Defends Against Ant Predators

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

Ancient Skull Sheds Light on Plotopteridae Origins

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.