• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Afraid of food? The answer may be in the basal forebrain

Bioengineer by Bioengineer
June 18, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Baylor College of Medicine

After fasting for 24 hours the typical laboratory mouse spends much time eating. Surprisingly, this is not what Jay M. Patel saw when he was studying basal forebrain circuits in mice.

“When I joined Dr. Benjamin Arenkiel’s lab, they had just discovered a unique set of circuits in the basal forebrain, a region separate from the hypothalamus, the brain area that normally regulates how much you eat depending on how much energy you spend,” said Patel, a student in the neuroscience Medical Scientist Training Program (M.D./Ph.D.) at Baylor College of Medicine. “I wanted to investigate what these circuits that are linked to the feeding center of the brain were actually doing.”

Using cutting-edge technologies, including microendoscopy-imaging protocols, Patel and his colleagues first investigated what types of stimuli would activate the circuits. By recording the activity of the neurons, Patel found that food odors highly activated a subset of neurons in the basal forebrain identified by the expression of the molecule vGlut2.

“That was very interesting because we know that the sense of smell can drive appetite. For instance, after smelling dessert, you may want to eat it even though you just had a big meal. Or conversely, after smelling a spoiled dish you won’t eat it, even if you are very hungry,” Patel said.

Although researchers knew that the perception of food odors itself can affect neuronal activity in the hypothalamus, it was unclear how odor perception was relayed to the hypothalamus. They were excited at the possibility that the novel vGlut2+ basal forebrain circuits might provide an answer.

Surprising results
Patel and his colleagues studied the effect of specifically activating vGlut2+ neurons in the basal forebrain and observed dramatically altered feeding behavior in mice.

“Surprisingly, four to five days after we began the experiment, the mice started to lose weight quickly,” Patel said.

The researchers determined that the animals’ rapid weight loss could not be explained by metabolic dysfunction, as they found no differences between the levels of pituitary or thyroid hormones, or in the levels of glucose, insulin or leptin between the experimental and control groups. The mice lost weight rapidly because they had stopped eating.

“They did not eat even when they were hungry, which we found remarkable because animals are compelled to eat to survive,” Patel said.
Interestingly, further experiments showed that naturally aversive odors had a stronger effect on vGlut2+ basal forebrain neurons than food alone, triggering a food avoidance behavior in mice.

“It seemed that the animals were afraid of food,” Patel said. “Even though they were hungry, they avoided locations where food was placed.”

“We have identified a brain circuit driven by vGlut2+ neurons in the basal forebrain that suppresses appetite when it’s active and stimulates feeding behavior when it’s inactive,” Patel said. “We also determined that this circuit, which is formed by just a couple of thousand neurons involved in perceiving the outside world, connects with and overrides feeding behaviors regulated by the hypothalamus.”

“We think this work has potential implications that reach beyond feeding behaviors and mouse physiology,” said Arenkiel, associate professor of neuroscience and molecular and human genetics and a McNair Scholar at Baylor. He is also a member of the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital. “This circuit is highly involved with how our brain perceives the outside world and brings this information to the hypothalamus, thus connecting with aspects of physiology like feeding, which relates to eating disorders that are associated with many neuropsychiatric conditions.”

###

To read all the details of this work, go to the journal eLife.

Other contributors to this work include Jessica Swanson, Kevin Ung, Alexander Herman, Elizabeth Hanson and Joshua Ortiz-Guzmán, all affiliated with Baylor College of Medicine; Jennifer Selever (at Baylor and the Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital); and Qingchun Tong at University of Texas Health Science Center, Houston.

For a complete list of sponsors visit the paper online.

Media Contact
Graciela Gutierrez
[email protected]

Original Source

https://blogs.bcm.edu/2019/06/11/from-the-labs-afraid-of-food-the-answer-may-be-in-the-basal-forebrain/

Related Journal Article

http://dx.doi.org/10.7554/eLife.44548

Tags: BiologyCell BiologyEating Disorders/ObesityneurobiologyPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Face DNA Influences Touch DNA on Phone Screens

October 31, 2025

Exploring Patient Safety Culture in Brazilian Teaching Hospital

October 31, 2025

Impact of Childhood Trauma on Autistic Youth Health

October 31, 2025

Advancing Smoking Cessation Strategies for Individuals Living with HIV

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Face DNA Influences Touch DNA on Phone Screens

Exploring Patient Safety Culture in Brazilian Teaching Hospital

Advancing Biliary Stricture Diagnosis with ROSE-Enhanced Biopsy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.