• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 8, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Advanced imaging technology captures translation of the maternal genome

Bioengineer by Bioengineer
February 22, 2021
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: A. Amunts and D. Nowakowski

An international collaboration among researchers from Finland, Sweden, UK and the USA has captured ribosomes translating messenger RNA expressed from the maternally inherited mitochondrial genome. Utilising the latest advances in cryo-electron microscopy, the group discovered a novel mechanism that mitochondrial ribosomes use for the synthesis and delivery of newly made proteins to prevent premature misfolding. Disruptions to protein folding can lead to devastating human diseases.

There is a familiar saying, “It’s all in the genes”. As modern archaeology reveals, the DNA that encodes genes can be found among the remnants of our ancestors and from any organism, small and large, that once roamed the earth. The genetic blueprint alone is not sufficient; life requires the faithful expression and translation of our genomes. Basic research in molecular biology has revealed in beautiful detail the mechanisms by which these fundamental processes operate. One of these pioneering discoveries was that of Nobel Prize winners François Jacob and Jacques Monod, who established the paradigm that we now know as cellular gene expression, whereby the information in our genome is transcribed, read and converted into functional proteins. Since then, researchers young and old have been filling in the details of these incredible processes to uncover the complexity of biology.

In a recent study published in Science an international collaboration of researchers, involving University of Helsinki researchers Dr. Brendan Battersby and Dr. Uwe Richter, built upon this tradition by revealing the specialized mechanism for translation of the mitochondrial genome into proteins.

Within the cells that make up the tissues and organs of our bodies, mitochondria compartmentalise the breakdown of nutrients with oxygen into the conversion of cellular energy. As a result, it is best known as the powerhouse of the cell. This function is dependent upon the faithful expression of the maternally inherited mitochondrial genome. Disruptions to the process underlie a large group of human diseases that can strike at any age, differing in the affected tissue and severity. Despite the importance, the molecular mechanisms of these processes have remained obscure. However, the breakthrough in biological imaging brought about by cryo-electron microscopy now provides researchers with the tools to investigate the functions of individual proteins at unprecedented resolution and detail.

By combining forces with Dr. Alexey Amunts at Stockholm University and Karolinska Institutet and Professor Antoni Barrientos at the University of Miami Miller School of Medicine, the group used their collective know-how to capture the mitochondrial ribosome translating messenger RNA (mRNA) into a protein. The structure revealed a unique gating mechanism to prevent newly made proteins from prematurely misfolding. For proteins to be functional within our cells requires coordinated folding processes to obtain a correct 3D shape. Disruptions to protein folding can have profound biological implications for all organisms and in humans lead to devastating diseases.

“Getting a direct picture of a biological process that we investigated for several years by biochemical and genetic tools is absolutely electrifying!” says Uwe Richter, a shared first author and Principal Investigator at the University of Helsinki and Newcastle University.

“This study highlights the power and brilliance of international collaborative basic science driven from the bottom-up,” says Research Director Brendan Battersby, who is one of the corresponding authors. “There is a worrying trend among scientific funding agencies to direct research from the top towards goal-oriented tasks pursued by large consortia, and in the process deprive research funds away from individual investigators who are the cornerstone of scientific discovery. The best scientists will always seek each other out to follow the creativity of their ideas, which the track record shows unquestionably leads to real innovation in the end.”

“Understanding the fine details of these cellular mechanisms has important considerations for human diseases but also for the side-effects of commonly prescribed antibiotics. Mitochondrial gene expression has many overlaps with that of bacteria and as a result many antibiotics used to treat bacterial infections can also disrupt our cellular powerhouses, accounting for side-effects of these medications. Solving these ribosome structures is integral to the development of effective and safe new antibiotics in the future. In the end, this highlights the importance of basic bottom-up research and how it continues to drive innovation and we cannot afford to lose it,” highlights Dr. Battersby.

###

Media Contact
Brendan Battersby
[email protected]

Original Source

https://www.helsinki.fi/en/news/life-science-news/advanced-imaging-technology-captures-translation-of-the-maternal-genome

Related Journal Article

http://dx.doi.org/10.1126/science.abe0763

Tags: BiologyCell BiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Helping people understand glaucoma with a mobile app

March 8, 2021
IMAGE

New Lancet series shows mixed progress on maternal and child undernutrition in last decade

March 7, 2021

Study reveals how egg cells get so big

March 5, 2021

Survey identifies factors in reducing clinical research coordinator turnover

March 5, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    694 shares
    Share 278 Tweet 174
  • People living with HIV face premature heart disease and barriers to care

    86 shares
    Share 34 Tweet 22
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyEcology/EnvironmentMaterialsMedicine/HealthClimate ChangePublic HealthCell BiologyInfectious/Emerging DiseasescancerGeneticsTechnology/Engineering/Computer ScienceChemistry/Physics/Materials Sciences

Recent Posts

  • Helping people understand glaucoma with a mobile app
  • Virtual avatar coaching with community context for adult-child dyads
  • New Lancet series shows mixed progress on maternal and child undernutrition in last decade
  • “Magic sand” might help us understand the physics of granular matter
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In