• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Adding a carbon atom transforms 2D semiconducting material

Bioengineer by Bioengineer
May 24, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Fu Zhang/Penn State

A technique that introduces carbon-hydrogen molecules into a single atomic layer of the semiconducting material tungsten disulfide dramatically changes the electronic properties of the material, according to Penn State researchers at Penn State who say they can create new types of components for energy-efficient photoelectric devices and electronic circuits with this material.

“We have successfully introduced the carbon species into the monolayer of the semiconducting material,” said Fu Zhang, doctoral student in materials science and engineering lead author of a paper published online today (May26) in Science Advances.

Prior to doping – adding carbon – the semiconductor, a transition metal dichalcogenide (TMD), was n-type — electron conducting. After substituting carbon atoms for sulfur atoms, the one-atom-thick material developed a bipolar effect, a p-type — hole — branch, and an n-type branch. This resulted in an ambipolar semiconductor.

“The fact that you can change the properties dramatically by adding as little as two atomic percent was something unexpected,” Mauricio Terrones, senior author and distinguished professor of physics, chemistry and materials science and engineering.

According to Zhang, once the material is highly doped with carbon, the researchers can produce a degenerate p-type with a very high carrier mobility. “We can build n+/p/n+ and p+/n/p+ junctions with properties that have not been seen with this type of semiconductor,” he said.

In terms of applications, semiconductors are used in various devices in industry. In this case, most of those devices will be transistors of different sorts. There are around 100 trillion transistors in a laptop.

“This type of material might also be good for electrochemical catalysis,” Terrones said. “You could improve conductivity of the semiconductor and have catalytic activity at the same time.”

There are few papers in the field of 2D materials doping, because it requires multiple processes to take place simultaneously under specific types of conditions. The team’s technique uses a plasma to lower the temperature at which methane can be cracked – split apart – down to 752 degrees Fahrenheit. At the same time, the plasma has to be strong enough to knock a sulfur atom out of the atomic layer and substitute a carbon-hydrogen unit.

“It’s not easy to dope monolayers, and then to measure carrier transport is not trivial,” Terrones says. “There is a sweet spot where we are working. Many other things are required.”

Susan Sinnott, professor and head of the Department of Materials Science and Engineering, provided theoretical calculations that guided the experimental work. When Terrones and Zhang observed that doping the 2D material was changing its optical and electronic properties – something they had never seen before – Sinnott’s team predicted the best atom to dope with and predicted the properties, which corresponded with the experiment.

Saptarshi Das, assistant professor of engineering science and mechanics, and his group, then measured the carrier transport in various transistors with increasing amounts of carbon substitution. They watched the conductance change radically until they had completely changed the conduction type from negative to positive.

“It was very much a multidisciplinary work,” Terrones says.

###

Additional authors on the Science Advances paper, titled “Carbon doping of WS2 monolayers: Bandgap reduction and p-type doping transport,” include current or former doctoral students Yanfu Lu, Daniel Schulman, Tianyi Zhang, Zhong Lin and Yu Lei; and Ana Laura Ellias and Kazunori Fujisawa, assistant research professors of physics.

The Basic Energy Sciences program in the Department of Energy’s Office of Science supported this work.

Media Contact
A’ndrea Elyse Messer
[email protected]

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    66 shares
    Share 26 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Experts Advocate for a Ban on Commercial Sunbeds in the UK

Autoimmune Attack on C9orf72 Linked to ALS

Exploring Chloride Effects on Stainless Steel Corrosion

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.