• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Activation of carbon-fluorine bonds via cooperation of a photocatalyst and tin

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from Osaka University have succeeded in developing the world’s first organic reaction that selectively converts a specific carbon-fluorine (C-F) bond in perfluorinated compounds to other functional groups

Fluorinated compounds are an important group of compounds that are widely used in pharmaceuticals, agricultural chemicals, functional resins, and organic electronic materials. In particular, perfluorinated compounds with multiple carbon-fluorine bonds are attracting attention because of their high thermal and chemical stability and various excellent properties such as water and oil repellency and chemical resistance.

“C-F bonds are extremely strong; hence, their transformation under mild conditions is difficult, and the selective activation of a specific C-F bond from among multiple C-F bonds in perfluorinated compounds has not been achieved,” explains Prof. Makoto Yasuda, corresponding author of the study.

In this research, site-selective C-F bond transformation to valuable allylic groups has been accomplished by using a photocatalyst and organotin compounds under safe and common visible light irradiation (Figure 2a). The establishment of the methodology to activate strong carbon-fluorine bonds under such mild conditions is the key to achieving the targeted transformation of perfluorinated compounds at specific sites.

“We have attempted to elucidate this reaction mechanism using both experimental and theoretical chemical methods and have found that the cooperative action of the photocatalyst and organotin compound plays a very important role in the progression of the reaction. In particular, it is noteworthy that the organotin compound plays the dual role of capturing unstable radical intermediates and scavenging fluorine as a Lewis acid, which is a very significant finding for future research on carbon-fluorine bond conversion reactions,” explains Prof. Makoto Yasuda. Furthermore, by using this method, they have succeeded in synthesizing fluorine-substituted analogues of a compound that show promise for pharmaceutical applications (Figure 2b).

“Fluorine is an important element in pharmaceuticals, and many small-molecule drugs contain fluorine atoms. It is expected that the field of fluorine-containing drugs will continue to grow. As a result of this research, high value-added perfluorinated compounds, which were impossible to synthesize in the past, can now be synthesized in a simple and short process, which is expected to lead to the expansion of the library of seed compounds for fluorine-containing drug discovery,” says Prof. Makoto Yasuda.

###

The article, “Photoredox-catalyzed C-F bond allylation of perfluoroalkylarenes at the benzylic position” was published in the Journal of the American Chemical Society at DOI: https://doi.org/10.1021/jacs.1c03760

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan’s leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan’s most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/en

Media Contact
Saori Obayashi
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/jacs.1c03760

Tags: Chemistry/Physics/Materials SciencesMaterialsPharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Atropisomeric Macrocyclic Peptides with Quinolines

September 17, 2025

3D-Printed Fuel Cells Set to Energize Future Aerospace Innovations

September 17, 2025

Atomic Magnetometers Usher in a New Era for Electromagnetic Induction Imaging

September 17, 2025

Researchers Develop First Prototype Battery Using Hydride Ions

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Parents’ Perspectives on Neonatal Transfer Process

Room-Temperature Rechargeable All-Solid-State Hydride Battery

Creating Atropisomeric Macrocyclic Peptides with Quinolines

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.