• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 9, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

ACSL1 as a main catalyst of CoA conjugation of propionic acid-class NSAIDs in liver

Bioengineer by Bioengineer
January 22, 2021
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Kanazawa University find that propionic acid-class NSAIDs are conjugated with CoA by hepatic ACSL1, leading to liver toxicity via covalent binding with hepatic proteins

IMAGE

Credit: Kanazawa University

Kanazawa, Japan – Liver injury is a rare side effect of nonsteroidal anti-inflammatory drugs (NSAIDs), which are frequently used for daily pain control. This toxicity has been regarded as a “black box” and is mainly managed by an empirical approach, but there is not a clear understanding of the mechanism. Now, researchers from Japan have found that a bit of attention to the types and frequencies of NSAIDs could help people avoid liver injury.

In a study published recently in Biochemical Pharmacology, researchers from Kanazawa University have revealed that specific NSAIDs, including ibuprofen, are metabolized by one of the acyl-CoA synthetases, ACSL1, in a manner that can have toxic effects.

NSAIDs containing a specific chemical group, carboxylic acid, can form “conjugates” with coenzyme A (CoA) or glucuronic acid. Although these conjugates are suspected to cause toxicities, such as liver injury and anaphylaxis, the processes involved in CoA conjugation have been poorly understood, and researchers at Kanazawa University have aimed to address this.

“NSAID toxicities including liver injury and anaphylaxis had been considered to be caused by conjugates with glucuronic acid, another types of metabolite,” says senior author of the study, Miki Nakajima. “Because a recent study demonstrated a robust interaction between ibuprofen and CoA, we wanted to investigate how a range of NSAIDs conjugated with CoA in the presence of liver enzymes.”

To do this, the researchers performed enzymatic reactions involving human liver extracts, CoA, and representative medications from each of 10 classes of NSAIDs. They used a mass spectrometry method to identify interactions between the NSAIDs and CoA.

“The difference among NSAIDs was striking,” explains Tatsuki Fukami, corresponding author. “We found that propionic acid-class NSAIDs, such as ibuprofen, had robust binding interactions with CoA, whereas other NSAIDs, such as salicylic acid, did not. This selectivity was likely determined by ACSL1.”

In addition, CoA conjugates of propionic acid-class NSAIDs could strongly bind with liver proteins, while glucuronic acid conjugates of those same NSAIDs formed weaker bonds with liver proteins.

“Our findings suggest that the high covalent binding of CoA-conjugate of propionic acid-class NSAIDs to hepatocellular proteins leads to liver injury. Because there is a large interindividual variation in the hepatic expression of ACSL1 catalyzing CoA conjugation with propionic acid-class NSAIDs, this variation may account for the susceptibility to their toxicities,” says Fukami.

Because pain control is an important medical problem for many people worldwide, this new information could help pharmaceutical companies to generate pain control options with fewer risks of severe side effects.

###

Media Contact
Tomoya Sato
[email protected]

Original Source

https://doi.org/10.1016/j.bcp.2020.114303

Related Journal Article

http://dx.doi.org/10.1016/j.bcp.2020.114303

Tags: BiochemistryInternal MedicineLiverMedicine/HealthPharmaceutical SciencesToxicology
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Greater tobacco use linked to higher levels of inflammation in HIV-positive people

March 8, 2021
IMAGE

Canadian innovators use video games to help children with neurodevelopment disabilities

March 8, 2021

Speeding treatment for urinary tract infections in children

March 8, 2021

Assessing regulatory fairness through machine learning

March 8, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    709 shares
    Share 284 Tweet 177
  • People living with HIV face premature heart disease and barriers to care

    86 shares
    Share 34 Tweet 22
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • Scientists model a peculiar type of breast cancer

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

cancerCell BiologyClimate ChangeTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesChemistry/Physics/Materials SciencesEcology/EnvironmentGeneticsMedicine/HealthBiologyMaterialsPublic Health

Recent Posts

  • Engineering platform offers collaborative cloud options for sustainable manufacturing
  • Research pinpoints unique drug target in antibiotic resistant bacteria
  • How fast is the universe expanding? Galaxies provide one answer.
  • Young white-tailed deer that disperse survive the same as those that stay home
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In