• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Acoustic solutions made from natural fibers can reduce buildings’ carbon footprints

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Aalto University researchers discovered that wood-based pulp fibers are also well-suited for making acoustic materials

Good acoustics in the workspace improve work efficiency and productivity, which is one of the reasons why acoustic materials matter. The acoustic insulation market is already expected to hit 15 billion USD by 2022 as construction firms and industry pay more attention to sound environments. Researchers at Aalto University, in collaboration with Finnish acoustics company Lumir, have now studied how these common elements around us could become more eco-friendly, with the help of cellulose fibres.

‘Models for acoustic absorption are based on tests done with synthetic fibres, and natural fibres don’t adhere to these models. With natural fibres like cellulose, we can use thinner structures to achieve the same sound absorption as synthetic fibres,’ says Jose Cucharero, a doctoral student at Aalto University.

Cucharero’s research explores the effect of natural fibres’ properties on sound absorption and how these fibres can be used in room acoustics. Synthetic fibres, such as fibreglass and rockwool, are uniform in quality. Cellulose fibres have a complex structure with natural irregularities, which can be an asset for absorbing sound indoors. The origin of fibres also seems to matter: his research has found that hardwood fibres absorb sound better than softwood fibres. Based on the research, this can be attributed to the smaller dimensions of the hardwood fibres.

In addition to their excellent acoustic properties, cellulose fibres also have positive environmental impacts compared to traditional acoustic materials. The production of cellulose fibres is considerably more energy-efficient, and the fibres also absorb significant amounts of carbon dioxide from the atmosphere. Using the fibre in construction materials is an effective way to store carbon: buildings last for decades, unlike single-use packaging and paper where cellulose is typically used.

‘Acoustics solutions based on cellulose fibres can be applied to a wide range of facilities. For example, acoustic sprays — which can be used on any surface to create a porous, sound-absorbing layer — can significantly improve the comfort of buildings under renovation without changing their visual appearance,’ Cucharero says.

Research results are already used in product development

Alongside his doctoral dissertation, Jose Cucharero works at Lumir Oy, which produces acoustic solutions in line with the principles of the circular economy. The results of the dissertation are used in the development of new cellulose-based acoustics solutions, and the study has been rapidly applied in product development.

The commercial perspective is also complemented by tests that ensure the products’ scalable manufacturing and fire resistance. Based on the results, an industrially scalable process has been developed for the production of acoustic panels based on cellulose fibres.

‘Governments around the world have set out to become carbon neutral. We can’t achieve this by simply reducing emissions; we need to also absorb carbon dioxide from the atmosphere and store it in products.’ , says Lumir’s R&D Director Tuomas Hänninen, Doctor of Technology and Jose Cucharero’s thesis advisor.

###

Findings have been most recently published in Frontiers of Built Environment and Cellulose.

Media Contact
Jose Cucharero
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fbuil.2021.665332

Tags: AcousticsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesCivil EngineeringForestryIndustrial Engineering/ChemistryMaterialsPlant SciencesUrbanization
Share12Tweet8Share2ShareShareShare2

Related Posts

Cerebral Resistive Indices Linked to Premature Hemorrhage

October 4, 2025

Gastric Microbiome’s Role in Cancer Risk and Prognosis

October 4, 2025

Revolutionizing Optimization: Deep Learning for Complex Systems

October 4, 2025

Health Insurance Disparities Impact Midlife Depression Trends

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cerebral Resistive Indices Linked to Premature Hemorrhage

Gastric Microbiome’s Role in Cancer Risk and Prognosis

Revolutionizing Optimization: Deep Learning for Complex Systems

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.