• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Acoustic solutions made from natural fibers can reduce buildings’ carbon footprints

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Aalto University researchers discovered that wood-based pulp fibers are also well-suited for making acoustic materials

Good acoustics in the workspace improve work efficiency and productivity, which is one of the reasons why acoustic materials matter. The acoustic insulation market is already expected to hit 15 billion USD by 2022 as construction firms and industry pay more attention to sound environments. Researchers at Aalto University, in collaboration with Finnish acoustics company Lumir, have now studied how these common elements around us could become more eco-friendly, with the help of cellulose fibres.

‘Models for acoustic absorption are based on tests done with synthetic fibres, and natural fibres don’t adhere to these models. With natural fibres like cellulose, we can use thinner structures to achieve the same sound absorption as synthetic fibres,’ says Jose Cucharero, a doctoral student at Aalto University.

Cucharero’s research explores the effect of natural fibres’ properties on sound absorption and how these fibres can be used in room acoustics. Synthetic fibres, such as fibreglass and rockwool, are uniform in quality. Cellulose fibres have a complex structure with natural irregularities, which can be an asset for absorbing sound indoors. The origin of fibres also seems to matter: his research has found that hardwood fibres absorb sound better than softwood fibres. Based on the research, this can be attributed to the smaller dimensions of the hardwood fibres.

In addition to their excellent acoustic properties, cellulose fibres also have positive environmental impacts compared to traditional acoustic materials. The production of cellulose fibres is considerably more energy-efficient, and the fibres also absorb significant amounts of carbon dioxide from the atmosphere. Using the fibre in construction materials is an effective way to store carbon: buildings last for decades, unlike single-use packaging and paper where cellulose is typically used.

‘Acoustics solutions based on cellulose fibres can be applied to a wide range of facilities. For example, acoustic sprays — which can be used on any surface to create a porous, sound-absorbing layer — can significantly improve the comfort of buildings under renovation without changing their visual appearance,’ Cucharero says.

Research results are already used in product development

Alongside his doctoral dissertation, Jose Cucharero works at Lumir Oy, which produces acoustic solutions in line with the principles of the circular economy. The results of the dissertation are used in the development of new cellulose-based acoustics solutions, and the study has been rapidly applied in product development.

The commercial perspective is also complemented by tests that ensure the products’ scalable manufacturing and fire resistance. Based on the results, an industrially scalable process has been developed for the production of acoustic panels based on cellulose fibres.

‘Governments around the world have set out to become carbon neutral. We can’t achieve this by simply reducing emissions; we need to also absorb carbon dioxide from the atmosphere and store it in products.’ , says Lumir’s R&D Director Tuomas Hänninen, Doctor of Technology and Jose Cucharero’s thesis advisor.

###

Findings have been most recently published in Frontiers of Built Environment and Cellulose.

Media Contact
Jose Cucharero
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fbuil.2021.665332

Tags: AcousticsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesCivil EngineeringForestryIndustrial Engineering/ChemistryMaterialsPlant SciencesUrbanization
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI Revolutionizes University Physical Education Teaching Methods

December 13, 2025

Trehalose 6-Phosphate Lowers Echinocandin Resistance in Candidozyma auris

December 13, 2025

Hyperdynamic Circulation: A Key Obesity Indicator?

December 13, 2025

Rethinking Vigabatrin for Infantile Spasms: Risks and Insights

December 13, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    108 shares
    Share 43 Tweet 27
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Revolutionizes University Physical Education Teaching Methods

Trehalose 6-Phosphate Lowers Echinocandin Resistance in Candidozyma auris

Hyperdynamic Circulation: A Key Obesity Indicator?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.