• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 31, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Acidic pH: The weakness of cancer cells

Bioengineer by Bioengineer
July 31, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Miquel Duran-Frigola, IRB Barcelona

Cancer cells are known to acidify their environment and, consequently, the interior of the cells themselves is alkalised. In principle, this deregulation should hinder the development and proliferation of these cells. However, exactly the opposite happens in cancer. A computational study co-authored by computational chemist Miquel Duran-Frigola, from the Institute for Research in Biomedicine (IRB Barcelona), has demonstrated that cancer cells proliferate less and in a less robust manner when their internal pH is lowered, that is to say it becomes more acidic. This finding thus reveals opportunities for new therapeutic approaches to tackle the disease.

Using hundreds of thousands of data from previous biochemical assays and a database on the gene expression of cancer cells, the researchers have developed a computational model that analyses how variations in pH affect the activity of almost 2000 metabolic enzymes. "We are a computational lab and we are devoted to systems biology. We wanted to address the question on a large scale," says Miquel Duran-Frigola, Associate Researcher with the Structural Bioinformatics and Network Biology lab, headed by ICREA researcher Patrick Aloy. "Understanding the link between metabolic pathways that work better under different pHs can give us an idea about the mechanisms used by cancer to survive at basic pH," explains Duran-Frigola.

Acidification as an objective

The researchers have confirmed the hypothesis that they initially formulated. According to this hypothesis, if cancer cells proliferate easily in an alkaline environment, then they would be more vulnerable under acidic conditions. This paves the way to considering the acidification of the cancer cells themselves, combined with more conventional therapies, as a good therapeutic strategy.

New therapeutic targets

Furthermore, the researchers have identified the metabolic enzymes that work synergistically with intracellular acidity in the development of cancer, thus revealing these molecules as possible therapeutic targets. Indeed, five of these potential targets have already been tested in the lab using breast cancer cell lines and have yielded promising results.

"This work is still very academic, but we believe that some of the targets identified are ready to be tested in animals, thus allowing us to move into more advanced pre-clinical trial stages," says Miquel Duran-Frigola. The study, which has been performed in collaboration with the Moffitt Cancer Center and the University of Maryland, both in the US, has been published in Nature Communications.

###

The study has been done in collaboration with the University of Maryland and the MOFFIT.

Reference article:

Erez Persi, Miquel Duran-Frigola, Mehdi Damaghi, William R. Roush, Patrick Aloy, John L. Cleveland, Robert J. Gillies & Eytan Ruppin

Systems analysis of intracellular pH vulnerabilities for cancer therapy

Nature Communications (2018): DOI 10.1038/s41467-018-05261-x

Media Contact

Sònia Armengou
[email protected]
34-934-037-255

http://www.irbbarcelona.org

Original Source

https://www.irbbarcelona.org/en/news/acidic-ph-the-weakness-of-cancer-cells http://dx.doi.org/10.1038/s41467-018-05261-x

Share15Tweet8Share2ShareShareShare2

Related Posts

CircKIAA1617 Enhances Stemness in ER-Positive Breast Cancer

January 31, 2026

AI Tool Detects Intracranial Hemorrhage in Children

January 31, 2026

Essential Whole-Spine Imaging in Pediatric Abuse Cases

January 31, 2026

Uncommon Imaging Features of Chronic Nonbacterial Osteitis

January 31, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    157 shares
    Share 63 Tweet 39
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    149 shares
    Share 60 Tweet 37
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nano-Delivery System Targets Tumor Endothelium for Triple-Negative Breast Cancer

Night Feeding Boosts Ovarian Rhythm and Follicle Growth

Urban-Rural Leisure Patterns Affect Older Adults’ Health

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 72 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.