• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

A weapon to make a superbug to become more deadly

Bioengineer by Bioengineer
October 26, 2019
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Professor Chen and his team carried out experiments to compare the survival rates of the mice infected with different bacterial strains and different dosages. Testing strains included the Klebsiella variicola…
view more 


A recent research led by a scientist at City University of Hong Kong (CityU) has discovered an easily transmitted DNA piece that can make a new type of hyper-resistant and deadly superbug become hyper-virulent quickly, posing an unprecedented threat to human health.

Klebsiella pneumoniae is a major bacterial pathogen that can cause serious infections, especially in patients with compromised immune system. And it can easily spread through healthcare facilities, such as neonatal intensive-care units. It belongs to the Klebsiella genus, which is classified by the World Health Organization as one of the three “critical priority pathogens” for its multi-drug resistance, and hence new drugs are urgently needed. *

In 2017, Professor Chen Sheng, who then worked at the Hong Kong Polytechnic University, together with his research team and collaborators from Zhejiang University, discovered a new strain of Klebsiella pneumoniae which was not only resistant to carbapenem – a highly effective antibiotic commonly used for treating severe or high-risk bacterial infections, but also hyper-virulent and highly transmissible. Their findings were published in Lancet Infectious Diseases (DOI: 10.1016/s1473-3099(17)30489-9).

A puzzle to be solved

“But we did not know how this superbug was formed,” said Professor Chen, who is now the Acting Head of Department of Infectious Diseases and Public Health at City University of Hong Kong.

To solve the puzzle, Professor Chen and his team continued the investigation of this new hyper-virulent Klebsiella pneumoniae strain.

Recently, when they isolated a carbapenem-resistant Klebsiella pneumonia strain from a patient in a Chinese hospital, the phylogenetic analysis revealed that the strain actually belonged to Klebsiella variicola strain. “Klebsiella variicola was rarely isolated from clinical samples. It usually resides in the respiratory and gastrointestinal tract of patients without producing typical signs of bacterial infections,” said Professor Chen.

The team discovered that this Klebsiella variicola strain actually carries a new plasmid – a ring-shaped piece of DNA, which harbours the key genes of the virulence plasmid commonly found in hyper-virulent Klebsiella pneumoniae, leading to high-level virulence and making the bacteria more dangerous.

In the experiments, when the mice were infected with carbapenem-resistant Klebsiella pneumonia with this plasmid, all the mice died, and the mortality rate was similar to the hyper-virulent control strain. But when the mice were infected with the same strain which lacked this plasmid, all of the mice survived.

The secret behind the superbug

Further experiments by the team also discovered that the new-found plasmid could travel from one bacterium to another. The transfer of this virulence plasmid to a carbapenem-resistant Klebsiella pneumoniae strain can result in a significant increase in the virulence level of such strain, making it both carbapenem-resistant and hyper-virulent.

The new findings were published in Nature Microbiology end of last month (DOI: 10.1038/s41564-019-0566-7).

“The significance of the current study is that we discovered a new conjugative plasmid, which may be responsible for the formation of the new type of superbug that we discovered in 2017. This conjugative plasmid could covert a normal Klebsiella pneumoniae strains into a hyper-virulent Klebsiella pneumoniae in a rapid way. This suggests that the hyper-virulent Klebsiella pneumoniae, which can cause a deadly infection in humans, could become prevalent due to the transmission of this plasmid in clinical Klebsiella pneumonia and pose a bigger threat to patients’ health,” said Professor Chen.

Based on this finding and more data from his team, Professor Chen said that there would be more different types of conjugative virulence plasmid transmitting around in clinical Klebsiella pneumoniae. His team will continue to investigate more clinical Klebsiella penumoniae strains to discover more different types of conjugative virulence plasmids, which attribute to the current emergence of hypervirulent and carbapenem-resistant Klebsiella pneumoniae.

###

*https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed

Media Contact
P. K. Lee
[email protected]
852-344-28925

Original Source

https://doi.org/10.1038/s41564-019-0566-7

Related Journal Article

http://dx.doi.org/10.1038/s41564-019-0566-7

Tags: BacteriologyBiologyEpidemiologyGenesGeneticsInfectious/Emerging DiseasesMedicine/HealthMicrobiologyPublic HealthVirology
Share14Tweet9Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    135 shares
    Share 54 Tweet 34
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Free-Standing Porous Carbon Nanofibers for Zinc-Ion Capacitors

Validating 3D Echocardiography for Pediatric Heart Assessment

Emergency Ventilator Tested for Resource-Limited ICUs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.