• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A warming climate and intensifying land use increase mercury content in fish

Bioengineer by Bioengineer
September 6, 2025
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recent studies show that, in the future, the mercury concentration of fish in Finnish Lapland can shift closer to the level found in lakes located below the Arctic Circle. According to researchers, mercury content should be increasingly carefully investigated and monitored in fish and food webs, as the climate and land use change.

Mercury is a heavy metal found in nature. Methylmercury, a particularly toxic form of the metal, accumulates in fish and is biomagnified in food webs. Humans are exposed to methylmercury especially through fish-based diets.

Researchers investigated the joint effects of the climate and land use in Finnish Lapland. Intense land use, a warmer climate and increased precipitation increase the leaching of nutrients and carbon-bound mercury stored in the soil into waterways. The use of fossil fuels has also increased mercury levels in the environment.

“Lapland is an important subject of research, since temperatures, precipitation and nutrient levels grow significantly when we move from the almost pristine lakes in the north towards the southern lakes which are more eutrophic and murkier. At the same time, land use in catchment areas is moving from reindeer herding to intensive forestry. Our research area has no direct sources of mercury emissions. Instead, the mercury found in the region originates in long-range atmospheric deposition and leaching from the catchment area soil,” says Professor of Environmental Research Kimmo Kahilainen from the University of Helsinki’s Lammi Biological Station.

The researchers found that the warmer and murkier the lake, the higher the mercury concentration in algae. This was reflected in the fish as well. Mercury content in vendace and roach living in warmer and eutrophic lakes was slightly higher compared to those living in pristine lakes, while the mercury content of perch and pike grew markedly.

“Global warming and increasing precipitation, together with intensifying land use, increase leaching from catchment areas. In the future, mercury content in Lappish fish can indeed shift closer to the level found in subarctic lakes. As the climate and land use change, mercury concentration in fish and food webs should be increasingly carefully investigated and monitored,” Kahilainen says.

###

This study was made available online in March 2021 ahead of final publication in issue on July 20, 2021.

Media Contact
Kimmo Kahilainen
[email protected]

Original Source

https://www2.helsinki.fi/en/news/sustainability-news/a-warming-climate-and-intensifying-land-use-increase-mercury-content-in-fish

Related Journal Article

http://dx.doi.org/10.1016/j.scitotenv.2021.146261

Tags: BiologybiomagnificationClimate ChangeEcology/Environmentenvironmental monitoringland use impactMarine/Freshwater BiologyMercury pollution
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Water Absorption in Footballs: Leather vs. Synthetic

Grape and Olive Waste Transformed Into Asphalt Antioxidants

Enhancing Co-Composting: Quicklime Boosts Nutrient Recovery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.