• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A talented 2D material gets a new gig

Bioengineer by Bioengineer
March 4, 2020
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Berkeley Lab scientists tap into graphene’s hidden talent as an electrically tunable superconductor, insulator, and magnetic device for the advancement of quantum information science

IMAGE

Credit: Guorui Chen/Berkeley Lab


Ever since graphene’s discovery in 2004, scientists have looked for ways to put this talented, atomically thin 2D material to work. Thinner than a single strand of DNA yet 200 times stronger than steel, graphene is an excellent conductor of electricity and heat, and it can conform to any number of shapes, from an ultrathin 2D sheet, to an electronic circuit.

Last year, a team of researchers led by Feng Wang, a faculty scientist in Berkeley Lab’s Materials Sciences Division and a professor of physics at UC Berkeley, developed a multitasking graphene device that switches from a superconductor that efficiently conducts electricity, to an insulator that resists the flow of electric current, and back again to a superconductor.

Now, as reported today in the journal Nature, the researchers have tapped into their graphene system’s talent for juggling not just two properties, but three: superconducting, insulating, and a type of magnetism called ferromagnetism. The multitasking device could make possible new physics experiments, such as research in the pursuit of an electric circuit for faster, next-generation electronics like quantum computing technologies.

“So far, materials simultaneously showing superconducting, insulating, and magnetic properties have been very rare. And most people believed that it would be difficult to induce magnetism in graphene, because it’s typically not magnetic. Our graphene system is the first to combine all three properties in a single sample,” said Guorui Chen, a postdoctoral researcher in Wang’s Ultrafast Nano-Optics Group at UC Berkeley, and the study’s lead author.

Using electricity to turn on graphene’s hidden potential

Graphene has a lot of potential in the world of electronics. Its atomically thin structure, combined with its robust electronic and thermal conductivity, “could offer a unique advantage in the development of next-generation electronics and memory storage devices,” said Chen, who also worked as a postdoctoral researcher in Berkeley Lab’s Materials Sciences Division at the time of the study.

The problem is that the magnetic materials used in electronics today are made of ferromagnetic metals, such as iron or cobalt alloys. Ferromagnetic materials, like the common bar magnet, have a north and a south pole. When ferromagnetic materials are used to store data on a computer’s hard disk, these poles point either up or down, representing zeros and ones – called bits.

Graphene, however, is not made of a magnetic metal – it’s made of carbon.

So the scientists came up with a creative workaround.

They engineered an ultrathin device, just 1 nanometer in thickness, featuring three layers of atomically thin graphene. When sandwiched between 2D layers of boron nitride, the graphene layers – described as trilayer graphene in the study – form a repeating pattern called a moirĂ© superlattice.

By applying electrical voltages through the graphene device’s gates, the force from the electricity prodded electrons in the device to circle in the same direction, like tiny cars racing around a track. This generated a forceful momentum that transformed the graphene device into a ferromagnetic system.

More measurements revealed an astonishing new set of properties: The graphene system’s interior had not only become magnetic but also insulating; and despite the magnetism, its outer edges morphed into channels of electronic current that move without resistance. Such properties characterize a rare class of insulators known as Chern insulators, the researchers said.

Even more surprising, calculations by co-author Ya-Hui Zhang of the Massachusetts Institute of Technology revealed that the graphene device has not just one, but two conductive edges, making it the first observed “high-order Chern insulator,” a consequence of the strong electron-electron interactions in the trilayer graphene.

Scientists have been in hot pursuit of Chern insulators in a field of research known as topology, which investigates exotic states of matter. Chern insulators offer potential new ways to manipulate information in a quantum computer, where data is stored in quantum bits, or qubits. A qubit can represent a one, a zero, or a state in which it is both a one and a zero at the same time.

“Our discovery demonstrates that graphene is an ideal platform for studying different physics, ranging from single-particle physics, to superconductivity, and now topological physics to study quantum phases of matter in 2D materials,” Chen said. “It’s exciting that we can now explore new physics in a tiny device just 1 millionth of a millimeter thick.”

The researchers hope to conduct more experiments with their graphene device to have a better understanding of how the Chern insulator/magnet emerged, and the mechanics behind its unusual properties.

###

Researchers from Berkeley Lab; UC Berkeley; Stanford University; SLAC National Accelerator Laboratory; Massachusetts Institute of Technology; China’s Shanghai Jiao Tong University, Collaborative Innovation Center of Advanced Microstructures, and Fudan University; and Japan’s National Institute for Materials Science participated in the work.

This work was supported by the Center for Novel Pathways to Quantum Coherence in Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

Media Contact
Theresa Duque
[email protected]
510-495-2418

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2049-7

Tags: Chemistry/Physics/Materials SciencesComputer ScienceElectromagneticsHardwareMaterialsNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Assessing Lung Recruitability in Neonatal Ventilation

August 13, 2025
blank

Triglyceride-Glucose Index Signals Parkinson’s Cognitive Decline

August 13, 2025

Revolutionary Technique Transports mRNA into Exosomes in Just 10 Minutes—Simply Mix and Go!

August 13, 2025

AI-Enhanced Infrared Thermography Enables Precise Temperature Pattern Detection in Calves

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Lung Recruitability in Neonatal Ventilation

Triglyceride-Glucose Index Signals Parkinson’s Cognitive Decline

Revolutionary Technique Transports mRNA into Exosomes in Just 10 Minutes—Simply Mix and Go!

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.