• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A sound idea: a step towards quantum computing

Bioengineer by Bioengineer
June 19, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of Tsukuba investigate a new method for generating coherent signals in silicon chips using laser-induced vibrations which may greatly accelerate the development of new quantum computers with superior performance

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – A team at the University of Tsukuba studied a novel process for creating coherent lattice waves inside silicon crystals using ultrashort laser pulses. Using theoretical calculations combined with experimental results that were obtained at the University of Pittsburgh, they were able to show that coherent vibrational signals could be maintained inside the samples. This research may lead to quantum computers based on existing silicon devices that can rapidly perform tasks out of the reach of even the fastest supercomputers now available.

From home PCs to business servers, computers are a central part of our everyday life, and their power continues to grow at an astounding rate. However, there are two big problems looming on the horizon for classical computers. The first is a fundamental limit on how many transistors we can pack into a single processor. Eventually, a totally new approach will be needed if we are to continue to increase their processing capacity. The second is that even the most powerful computers struggle with certain important problems, such as the cryptographic algorithms that keep your credit card number safe on the internet, or the optimization of routes for delivering packages.

The solution to both problems may be quantum computers, which take advantage of the rules of physics that govern very small length scales, as with atoms and electrons. In the quantum regime, electrons act more like waves than billiard balls, with positions that are “smeared-out” rather than definite. In addition, various components can become entangled, such that the properties of each one cannot be completely described without reference to the other. An effective quantum computer must maintain the coherence of these entangled states long enough to perform calculations.

In the current research, a team at the University of Tsukuba and Hrvoje Petek, RK Mellon Chair of Physics and Astronomy at the University of Pittsburgh used very short laser pulses to excite electrons inside a silicon crystal. “The use of existing silicon for quantum computing will make the transition to quantum computers much easier,” first author Dr. Yohei Watanabe explains. The energetic electrons created coherent vibrations of the silicon structure, such that the motions of the electron and the silicon atoms became entangled. The state of the system was then probed after a variable delay time with a second laser pulse.

Based on their theoretical model, the scientists were able to explain oscillations observed in the charge generated as a function of delay time. “This experiment reveals the underlying quantum mechanical effects governing the coherent vibrations,” says senior author Prof. Muneaki Hase, who performed the experiments. “In this way, the project represents a first step towards affordable consumer quantum computers.”

###

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/PhysRevB.99.174304

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mapping Meningococcal C Vaccination in Brazil, 2012-2024

Honeybee Silk: A Multifunctional Biomaterial Breakthrough

Developing Nursing Leadership Through Saudi Arabia’s Care Program

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.