• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A single allele deletion in gene encoding Zbtb38 leads to early embryonic death

Bioengineer by Bioengineer
April 18, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ikoma, Japan—DNA methylation is a major epigenetic modification that is crucial for mammalian development. For instance, DNA methylation is central to inexhaustible biological processes, such as gene regulation and cell fate decisions. In mammals, DNA methyltransferases are key for blastocysts to re-establish global DNA methylation patterns during implantation. This is critical for passing on epigenetic information to the next generation. On the other hand, the role of methyl-CpG binding proteins (MBPs) that bind methylated CpG as part of the DNA methylation processes is still unclear. However, a previous study conducted by researchers at Nara Institute of Science and Technology (NAIST), Japan, clarified that; Zbtb38, also known as CIBZ, is a zinc finger type of MBP that is pivotal for the growth of mouse embryonic stem (ES) cells. They further demonstrated that Zbtb38 facilitates the expression of Nanog, which is fundamental for the growth of ES cells. However, what Zbtb38 does in real life, is still a mystery.

IMAGE

Credit: Eishou Matsuda

Ikoma, Japan—DNA methylation is a major epigenetic modification that is crucial for mammalian development. For instance, DNA methylation is central to inexhaustible biological processes, such as gene regulation and cell fate decisions. In mammals, DNA methyltransferases are key for blastocysts to re-establish global DNA methylation patterns during implantation. This is critical for passing on epigenetic information to the next generation. On the other hand, the role of methyl-CpG binding proteins (MBPs) that bind methylated CpG as part of the DNA methylation processes is still unclear. However, a previous study conducted by researchers at Nara Institute of Science and Technology (NAIST), Japan, clarified that; Zbtb38, also known as CIBZ, is a zinc finger type of MBP that is pivotal for the growth of mouse embryonic stem (ES) cells. They further demonstrated that Zbtb38 facilitates the expression of Nanog, which is fundamental for the growth of ES cells. However, what Zbtb38 does in real life, is still a mystery.

In a further quest to solve this mystery, the same scientists at NAIST, led by Eishou Matsuda, used Cre-loxP technology to make conditional Zbtb38 knockout mice. Their ground-breaking research revealed that a single Zbtb38 allele deletion in the germline led to a decrease in epiblast cell growth and an increase in apoptosis soon after implantation, which led to early embryonic death. Nanog, Sox2 and genes that control epiblast growth and differentiation became dysfunctional when Zbtb38 was lost in heterozygous embryos.

“Our findings indicate that germline loss of the Zbtb38 single allele reduces epiblast cell proliferation and increases apoptosis shortly after implantation, resulting in early embryonic lethality. Heterozygous Zbtb38 deficiency reduced the expression of Nanog, Sox2 and genes involved in epiblast proliferation, differentiation and cell viability. This finding shows that a methyl-CpG binding protein has a role in controlling embryonic phenotype,” explains Matsuda.

“For the first time we demonstrated a link to an embryonic function for a protein that has long been known to bind methyl-CpG,” says co-author Yasumasa Ishida. “This presents a huge opportunity for further research to find out how Zbtb38 works during embryogenesis. More research needs to be done to elucidate the specific molecular mechanisms. Zbtb38 is found in all tissues, and it is linked to height, cancers, neurodegenerative diseases and rheumatoid arthritis, etc. Thus, the creation and analysis of tissue-specific Cre-mediated knockout mice will help us understand Zbtb38’s physiological functions and Zbtb38-linked diseases,” concludes Matsuda.

The findings of this work will interest developmental biologists as it emphasizes the epigenetic significance of DNA methylation during the early stages of pregnancy.

###

Resource

Title: Heterozygous loss of Zbtb38 leads to early embryonic lethality via the suppression of Nanog and Sox2 expression

Authors: Miki Nishio, Takuya Matsuura, Shunya Hibi, Shiomi Ohta, Chio Oka, Noriaki Sasai, Yasumasa Ishida & Eishou Matsuda

Journal: Cell Proliferation

Information about the Functional Genomics and Medicine Laboratory can be found at the following website: https://bsw3.naist.jp/eng/courses/courses211.html



Journal

Cell Proliferation

DOI

10.1111/cpr.13215

Article Title

Heterozygous loss of Zbtb38 leads to early embryonic lethality via the suppression of Nanog and Sox2 expression

Share12Tweet8Share2ShareShareShare2

Related Posts

Anomalodonta and vanuxemia

The clams that fell behind, and what they can tell us about evolution and extinction

May 31, 2023
Obstructive sleep apnea disrupts gene activity throughout the day in mice

Obstructive sleep apnea disrupts gene activity throughout the day in mice

May 30, 2023

CSI Singapore researchers uncover potential novel therapeutic targets against natural killer/T-cell lymphoma

May 30, 2023

Biological specimens imaged with X-rays without damage

May 30, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Biological cleanup discovered for certain “forever chemicals”

The clams that fell behind, and what they can tell us about evolution and extinction

Shedding light on the complex flow dynamics within the small intestine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In