• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 17, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A single allele deletion in gene encoding Zbtb38 leads to early embryonic death

Bioengineer by Bioengineer
April 18, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ikoma, Japan—DNA methylation is a major epigenetic modification that is crucial for mammalian development. For instance, DNA methylation is central to inexhaustible biological processes, such as gene regulation and cell fate decisions. In mammals, DNA methyltransferases are key for blastocysts to re-establish global DNA methylation patterns during implantation. This is critical for passing on epigenetic information to the next generation. On the other hand, the role of methyl-CpG binding proteins (MBPs) that bind methylated CpG as part of the DNA methylation processes is still unclear. However, a previous study conducted by researchers at Nara Institute of Science and Technology (NAIST), Japan, clarified that; Zbtb38, also known as CIBZ, is a zinc finger type of MBP that is pivotal for the growth of mouse embryonic stem (ES) cells. They further demonstrated that Zbtb38 facilitates the expression of Nanog, which is fundamental for the growth of ES cells. However, what Zbtb38 does in real life, is still a mystery.

IMAGE

Credit: Eishou Matsuda

Ikoma, Japan—DNA methylation is a major epigenetic modification that is crucial for mammalian development. For instance, DNA methylation is central to inexhaustible biological processes, such as gene regulation and cell fate decisions. In mammals, DNA methyltransferases are key for blastocysts to re-establish global DNA methylation patterns during implantation. This is critical for passing on epigenetic information to the next generation. On the other hand, the role of methyl-CpG binding proteins (MBPs) that bind methylated CpG as part of the DNA methylation processes is still unclear. However, a previous study conducted by researchers at Nara Institute of Science and Technology (NAIST), Japan, clarified that; Zbtb38, also known as CIBZ, is a zinc finger type of MBP that is pivotal for the growth of mouse embryonic stem (ES) cells. They further demonstrated that Zbtb38 facilitates the expression of Nanog, which is fundamental for the growth of ES cells. However, what Zbtb38 does in real life, is still a mystery.

In a further quest to solve this mystery, the same scientists at NAIST, led by Eishou Matsuda, used Cre-loxP technology to make conditional Zbtb38 knockout mice. Their ground-breaking research revealed that a single Zbtb38 allele deletion in the germline led to a decrease in epiblast cell growth and an increase in apoptosis soon after implantation, which led to early embryonic death. Nanog, Sox2 and genes that control epiblast growth and differentiation became dysfunctional when Zbtb38 was lost in heterozygous embryos.

“Our findings indicate that germline loss of the Zbtb38 single allele reduces epiblast cell proliferation and increases apoptosis shortly after implantation, resulting in early embryonic lethality. Heterozygous Zbtb38 deficiency reduced the expression of Nanog, Sox2 and genes involved in epiblast proliferation, differentiation and cell viability. This finding shows that a methyl-CpG binding protein has a role in controlling embryonic phenotype,” explains Matsuda.

“For the first time we demonstrated a link to an embryonic function for a protein that has long been known to bind methyl-CpG,” says co-author Yasumasa Ishida. “This presents a huge opportunity for further research to find out how Zbtb38 works during embryogenesis. More research needs to be done to elucidate the specific molecular mechanisms. Zbtb38 is found in all tissues, and it is linked to height, cancers, neurodegenerative diseases and rheumatoid arthritis, etc. Thus, the creation and analysis of tissue-specific Cre-mediated knockout mice will help us understand Zbtb38’s physiological functions and Zbtb38-linked diseases,” concludes Matsuda.

The findings of this work will interest developmental biologists as it emphasizes the epigenetic significance of DNA methylation during the early stages of pregnancy.

###

Resource

Title: Heterozygous loss of Zbtb38 leads to early embryonic lethality via the suppression of Nanog and Sox2 expression

Authors: Miki Nishio, Takuya Matsuura, Shunya Hibi, Shiomi Ohta, Chio Oka, Noriaki Sasai, Yasumasa Ishida & Eishou Matsuda

Journal: Cell Proliferation

Information about the Functional Genomics and Medicine Laboratory can be found at the following website: https://bsw3.naist.jp/eng/courses/courses211.html



Journal

Cell Proliferation

DOI

10.1111/cpr.13215

Article Title

Heterozygous loss of Zbtb38 leads to early embryonic lethality via the suppression of Nanog and Sox2 expression

Share12Tweet8Share2ShareShareShare2

Related Posts

Rib repair

For large bone injuries, it’s Sonic hedgehog to the rescue

May 17, 2022
Locus coeruleus in 7T scan

Ultra-powerful brain scanners offer hope for treating cognitive symptoms in Parkinson’s disease

May 17, 2022

Exercise increases dopamine release in mice

May 16, 2022

Precursor of spine and brain forms passively

May 16, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsVehiclesVaccineUrbanizationUniversity of WashingtonViolence/CriminalsVirologyVaccinesZoology/Veterinary ScienceUrogenital SystemVirusWeaponry

Recent Posts

  • Nearly half of patients at high risk for lung cancer delayed screening follow-up
  • Deep ocean warming as climate changes
  • For large bone injuries, it’s Sonic hedgehog to the rescue
  • New light on organic solar cells
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....