• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A simple, inexpensive way to make carbon atoms bind together

Bioengineer by Bioengineer
April 5, 2024
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA, CA—The active ingredient in many drugs is what’s known as a small molecule: bigger than water, much smaller than an antibody and mainly made of carbon. It’s tough, however, to make these molecules if they require a quaternary carbon—a carbon atom bonded to four other carbon atoms. But now, Scripps Research scientists have uncovered a potential cost-effective way to produce these tricky motifs.

A simple, inexpensive way to make carbon atoms bind together

Credit: Scripps Research

LA JOLLA, CA—The active ingredient in many drugs is what’s known as a small molecule: bigger than water, much smaller than an antibody and mainly made of carbon. It’s tough, however, to make these molecules if they require a quaternary carbon—a carbon atom bonded to four other carbon atoms. But now, Scripps Research scientists have uncovered a potential cost-effective way to produce these tricky motifs.

In the new findings, which were published in Science on April 5, 2024, Scripps Research chemists show that it’s possible to convert feedstock chemicals into quaternary carbons using a single, inexpensive iron catalyst. This method could benefit drug developers by making molecules cheaper and easier to produce at small and large scales.

“Quaternary carbons are ubiquitous across various areas of research—from drug discovery to material science,” says co-first author Nathan Dao, a PhD candidate at Scripps Research. “The synthesis of quaternary carbons, however, is a long-standing challenge in the field of organic chemistry, typically requiring numerous steps and relying on harsh conditions or less accessible starting materials.”

In addition to Dao, the study’s co-first authors included Xu-Cheng Gan and Benxiang Zhang.

Catalysts are substances used to speed up the rate of a chemical reaction. Sometimes, several different catalysts are necessary to promote a certain reaction and obtain the desired result: a veritable ‘reaction soup’. But catalysts can be very expensive, and they don’t always react as intended—and the more catalysts used, the more waste that’s produced. But the Scripps Research scientists determined that a single catalyst could perform multiple crucial rolls.

“A difficult chemical reaction often requires many interacting components,” according to co-senior author, Ryan Shenvi, PhD, a professor in the Department of Chemistry at Scripps Research. “A benefit of this work is it’s incredibly simple.”

The team identified simple conditions to convert carboxylic acids and olefins, two major classes of chemical feedstocks—or raw materials that fuel a machine or industrial process—into quaternary carbons by using an inexpensive iron-based catalyst. In addition, these chemical feedstocks aren’t only abundant, but they’re also low cost.

“Similar reactions have been gaining traction lately, so this discovery was inevitable,” Shenvi explains. “The pieces were already in the literature, but no one had put them together before.”

Overall, the study, which was done in collaboration with the lab of senior co-author Phil Baran, PhD, the Dr. Richard A. Lerner Endowed Chair in the Department of Chemistry at Scripps Research, highlights the ongoing role of chemistry in the development of modern technology and pharmaceuticals.

“This work is yet another striking demonstration of the power of the collaborative atmosphere at Scripps Research to unearth new transformations that can have a dramatic impact on simplifying the practice of organic synthesis,” Baran adds.

This work and the researchers involved were supported by funding from the National Institutes of Health (grants GM122606 and GM118176), the National Science Foundation (CHE1955922), Nanjing King-Pharm Co., Ltd), Pfizer and Biogen.

In addition to Gan, Zhang, Dao, Baran and Shenvi, authors of the study, “Carbon quaternization of redox active esters and olefins by decarboxylative coupling” are Cheng Bi, Maithili Pokle, Liyan Kan and Yu Kawamata of Scripps Research; Michael R. Collins of Pfizer Pharmaceuticals; Chet C. Tyrol of Pfizer Medicine Design; and  Philippe N. Bolduc and Michael Nicastri of Biogen Inc.



Journal

Science

DOI

10.1126/science.adn5619

Article Title

Carbon quaternization of redox active esters and olefins by decarboxylative coupling

Article Publication Date

5-Apr-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Examining the Link Between GLP-1 Receptor Agonists and Nonarteritic Anterior Ischemic Optic Neuropathy Risk in Older Adults with Diabetes

Examining the Link Between GLP-1 Receptor Agonists and Nonarteritic Anterior Ischemic Optic Neuropathy Risk in Older Adults with Diabetes

July 31, 2025
blank

Innovative Visual Microphone Uses Light to Capture Sound at Low Cost

July 31, 2025

Cutting-Edge Weather Tracking Uncovers Astonishing Lightning Extremes

July 31, 2025

Cosmic Mystery: Unraveling the Enigmatic Black Hole Phenomenon

July 31, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Examining the Link Between GLP-1 Receptor Agonists and Nonarteritic Anterior Ischemic Optic Neuropathy Risk in Older Adults with Diabetes

Light-Responsive Materials Imitate Brain Synapses

Breakthrough Study Reveals Molecular Defense Mechanisms Against Devastating Potato Pathogen

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.