• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 10, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A real turn on: Evolutionary rotation of fly genitalia tied to mating success

Bioengineer by Bioengineer
February 27, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research at Osaka University on the angle of male flies’ genitalia suggests a cooperative evolution of body structure and behavior

IMAGE

Credit: © Inatomi M. et al. (2019) Scientific Reports 9:210

Osaka, Japan – In the order Diptera, more-primitive species such as mosquitos generally do their deed in the end-to-end position. Higher (more evolved) species such as flies tend toward the male mounting the female from behind (male-above position).

It’s nature’s infallibility at work: these positions are the most effective and productive alignment of the two sexes’ genitalia for the sake of successful reproduction.

The genitalia of healthy higher species rotate a full 360 degrees early in their development, compared with the 180-degree rotation of males in the lower species. Both rotations allow ideal accommodation of the respective positions. There are broader implications here in terms of how species’ morphology (shape) and behavior evolutionarily cooperate.

Researchers at Osaka University set out to test how rotation of certain dipterans’ genitalia related to their mating behavior and copulatory success, and thereby to how this rotation ties to evolution. They recently reported their findings in Scientific Reports.

The researchers studied Myo31DF mutant flies, in which the genitalia sometimes prematurely terminate their rotation. This choice provided them with subjects with the same genetic background, though with a range of genital directions, which was ideal for examining correlation of the genitalia angle with mating behaviors and reproductive outcomes. In controlled conditions, they used video monitoring to analyze how the dorsoventral (back-to-belly) direction of the males’ genitalia affected their courtship behaviors and sexual success.

“Males with genitalia that had larger angle deviations from proper dorsovental direction had notably lesser success at producing offspring,” study co-author Kenji Matsuno explains.

Thus, genital rotation to accommodate the best sexual position for reproductive success bolstered the hypothesis that morphology (in this case, genital adaptation) and behavior (sexual position) have evolved cooperatively. However, there were exceptions. Males with genitalia 45 degrees off the ideal still copulated successfully; the key was not the degree of rotation, but rather the dorsoventral direction.

Interestingly, courtship behaviors and copulation position did not significantly vary among males with various angles of genitalia. The males generally all went through the same motions. The main indicator of ultimate success was the dorsoventral direction.

“The findings reaffirm that the male-above position evolved cooperatively with the additional 180-degree genital rotation from the ancestral end-to-end position, and that an insufficient angle can negatively affect reproduction,” study first author Momoko Inatomi says. “This is valuable from an evolutionary perspective, and we may be able to apply this finding for practical uses, such as pest control.”

###

The article, “Proper direction of male genitalia is prerequisite for copulation in Drosophila, implying cooperative evolution between genitalia rotation and mating behavior” was published in Scientific Reports at DOI: https://doi.org/10.1038/s41598-018-36301-7.

Media Contact
Saori Obayashi
[email protected]

Original Source

https://resou.osaka-u.ac.jp/en/research/2019/20190118_1

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-36301-7

Tags: BiologyDevelopmental/Reproductive BiologyEntomologyEvolutionFertilizers/Pest ManagementPhysiology
Share13Tweet8Share2ShareShareShare2

Related Posts

Extended Spectrum Beta-Lactamase in Ouagadougou Uropathogens

Extended Spectrum Beta-Lactamase in Ouagadougou Uropathogens

January 10, 2026
Unlocking Genetic Diversity in Xizang Sophora Moorcroftiana

Unlocking Genetic Diversity in Xizang Sophora Moorcroftiana

January 10, 2026

Diverse DNA Variants Linked to Deafness in Ecuador

January 10, 2026

Boosting European Chestnut Resilience Against Phytophthora Cinnamomi

January 10, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

FDX1-Driven Cuproptosis Worsens Cholestatic Liver Damage

Adaptive Noise AEKF Enhances Lithium-Ion Battery Evaluation

Extended Spectrum Beta-Lactamase in Ouagadougou Uropathogens

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.