• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A question of affinity

Bioengineer by Bioengineer
October 27, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How to design organic solar cell materials

IMAGE

Credit: MPI-P

Most of us are familiar with silicon solar cells, which can be found on the rooftops of modern houses. These cells are made of two silicon layers, which contain different atoms such as boron and phosphorus. When combined, these layers direct charges generated by the absorbed sunlight towards the electrodes – this (photo)current can then be used to power electronic devices.

The situation is somewhat different in organic solar cells. Here, two organic materials are mixed together, rather than arranged in a layered structure. They are blends of different types of molecules. One type, the acceptor, likes to take electrons from the other, the donor. To quantify how likely “electron transfer” between these materials takes place, one measures the so-called “electron affinity” and “ionization energy” of each material. These quantities indicate how easy it is to add or extract an electron from a molecule. In addition to determining the efficiency of organic solar cells, electron affinity and ionization energy also control other material properties, such as color and transparency.

By pairing donor and acceptor materials, one creates a solar cell. In an organic solar cell, light-particles (“photons”) transfer their energy to electrons. Excited electrons leave behind positive charges, called “holes”. These electron-hole pairs are then separated at the interface between the two materials, driven by the differences in the electron affinity and ionization energy.

Until now, scientists assumed that both electron affinity and ionization energy are equally important for the solar cell functionality. Researchers from KAUST and MPI-P have now discovered that in many donor-acceptor blends, it is mainly the difference of the ionization energy between the two materials, which determines the efficiency of the solar cell. The combination of results from optical spectroscopy experiments, performed in the group of Frédéric Laquai at KAUST, as well as computer simulations performed in the group of Denis Andrienko, MPI-P, in the department headed by Kurt Kremer, allowed precise design rules for molecular dyes to be derived, aimed at maximizing solar cell efficiency.

“In the future, for example, it would be conceivable to produce transparent solar cells that only absorb light outside the range visible to humans – but then with the maximum efficiency in this range,” says Denis Andrienko, co-author of the study published in the journal “Nature Materials“. “With such solar cells, whole fronts of houses could be used as active surface”, Laquai adds.

The authors envision that these studies will allow them to reach 20 % solar cell efficiency, a target that industry has in mind for cost-effective application of organic photovoltaics.

###

Media Contact
Dr. Denis Andrienko
[email protected]

Original Source

https://www.mpip-mainz.mpg.de/en/press/pr-2020-13

Related Journal Article

http://dx.doi.org/10.1038/s41563-020-00835-x

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)MaterialsMolecular PhysicsOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Attosecond Plasma Lens Technology Unveiled

November 5, 2025
Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

November 5, 2025

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genomic Insights Define Prognostic Mantle Cell Lymphoma Subtypes

Hidden Dangers: Drooling and Aspiration in Cerebral Palsy

Platelet Transfusions Impact Neonatal Bleeding, Inflammation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.