• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

A potential gamechanger in beating antimicrobial resistance

Bioengineer by Bioengineer
December 14, 2022
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

THE COVID pandemic has revealed just how delicate our public health is in terms of overcoming infectious diseases and antimicrobial resistance. Over the last decade small proteins known as Anti-microbial peptides (AMPs) have delivered promising results in helping anti-infectives overcome increasing antibiotic resistance problems but have proven difficult to commercially produce.

A potential gamechanger in beating antimicrobial resistance

Credit: Adobe Stock

THE COVID pandemic has revealed just how delicate our public health is in terms of overcoming infectious diseases and antimicrobial resistance. Over the last decade small proteins known as Anti-microbial peptides (AMPs) have delivered promising results in helping anti-infectives overcome increasing antibiotic resistance problems but have proven difficult to commercially produce.

Now, a radical research project involving experts from the University of Huddersfield aims to develop a new method for the commercial production of AMPs which if successful will open up a whole new range of opportunities for the use of bio-active peptides.

The RADOV Project

Titled RADOV or ‘RADiation harvesting of bioactive peptides from egg prOteins and their integration in adVanced functional products’, the four-year project features an international consortium of partners and has been awarded €2million from the European Union’s Euratom Research and Training Programme (EURATOM) Horizon Europe to carry out the necessary research.

Heading the team from the University is Professor Robert Edgecock from the University’s School of Computing and Engineering.  He revealed why AMPs have aroused great interest as potential next-generation antibiotics and how because long-term chemotherapy in cancer patients can lead to resistance to conventional cancer treatments and a susceptibility to pathogenic infection, due to AMPs’ antibacterial and anticancer properties, they could also become a new treatment option for cancer patients.

What are Anti-microbial peptides?

“Antimicrobial peptides (AMPs) are small proteins present in different lifeforms in nature, or that result from enzymatic digestion of proteins, which provides these lifeforms with a natural defence against microbial infections,” he said.

“In addition to the more specific antibacterial and anti-viral actions, they have shown immune-modulatory activities, antifungal actions, anti-inflammatory properties and even possess the ability to disintegrate cancerous cell membranes,” he added.

What makes AMPs viable and important alternative antimicrobial agents, explained Professor Edgecock, is the fact that the development of resistance by the microbes against the AMPs is relatively slow or delayed compared to that against conventional antibiotics.

“However, despite their promise,” he said, “very few of the AMPs have been commercialised so far, mainly due to technical difficulties in their manufacture.”

Methodology

To begin with, the researchers will use beams of electrons to synthesise the AMPs from egg proteins, and the results acquired regarding the peptide structure, irradiation conditions, and related bioactivity properties will become a vital output of the project.

The researchers will then use electron beam irradiation to further integrate the AMPs into two new products, peptide-laden antimicrobial/antioxidant hydrogel wound dressings and peptide-grafted active plastic foils for food packaging. This will effectively demonstrate the potential of the technique and the benefit of the antimicrobial properties of egg-derived bioactive peptides manufactured by radiation-induced fragmentation.

Co-ordinating the project is Poland’s Institute of Nuclear Chemistry and Technology, who will be assisted by the University of Huddersfield, Sweden’s KTH Royal Institute of Technology, Italy’s University of Palermo, the Italian National Research Council and Portugal’s Association of Instituto Superior Técnico for Research and Development.

Also playing a crucial role in the successful implementation of the project will be three industrial partners: Kikgel Sp. z o.o. and Dekofilm Polska Sp. z o.o. from Poland and Italy’s E.P.S. S.p.A. Egg Powder Specialists.



Share12Tweet8Share2ShareShareShare2

Related Posts

World-first guidelines created to help prevent heart complications in children during cancer treatment

World-first guidelines created to help prevent heart complications in children during cancer treatment

January 29, 2023
Automated MALDI-TOF MS based high-throughput screening workflow for in vitro enzyme assays

A new Assay screening method shows therapeutic promise for treating auto-immune disease

January 27, 2023

Louisiana Cancer Research Center appoints Associate Director of Administration

January 27, 2023

Afternoon chemotherapy proved to deliver more desirable results for female lymphoma patients

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

People with arthritis 20% less likely to be in work

A fairy-like robot flies by the power of wind and light

UK’s Overseas Territories at ongoing risk from wide range of invasive species

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In