• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, April 14, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A novel sperm selection technology to increase success rates of in vitro fertilization

Bioengineer by Bioengineer
July 2, 2020
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

LEFT: Mouse sperm collected by a conventional cell sorter. Motility cannot be maintained and sperm cannot advance.

Motile sperm are difficult to collect with a conventional cell sorter because they are vulnerable to physical damage. A research collaboration between Kumamoto and Kyoto Universities in Japan has developed a technique that uses a cell sorter with microfluidic chip technology to reduce cell damage and improve in vitro fertilization (IVF) rates. This research is expected to increase IVF rates to improve production of experimental animals and livestock, and could be used as a fertility treatment in human reproductive medicine.

It is important to select fertile sperm with good motility to obtain high IVF rates. Conventional cell sorters use flow cytometry to separate specific cells by type, and can be used to select sperm. However, since sperm cells are susceptible to physical damage, it is extremely difficult to separate them without effecting motility.

To reduce sperm cell damage, Professor Toru Takeo’s research team at Kumamoto University tried to develop a sperm selection technique using a cell sorter with microfluidic chip technology that reduces detrimental effects to cells. Microfluidic devices have minute channel structures with a width and depth between several to several-hundreds of micrometers and are widely used in chemical and biotechnology research.

While investigating the optimum separation conditions of sperm from a culture medium with their device, the researchers successfully collected mouse sperm that maintained motility. Furthermore, IVF using sperm collected with this device produced fertilized eggs and the embryos developed into neonatal mice after being transplanted into female mice.

This new technology can also be used to improve IVF. At the end stage of maturation, before egg penetration and fertilization, sperm undergo morphological and physiological changes called the acrosome reaction that makes them ready to fertilize an egg. To test whether they could increase fertility, researchers prepared a fluorescent substance that binds to fertile sperm and used the device to sort them from non-fertile sperm. Comparison IVF experiments revealed that the fertile sperm had a higher fertilization rate than the non-fertile sperm.

“We expect that our research can be used to increase the success rate of IVF in animals, and for fertility treatments in human reproductive medicine,” said Prof. Takeo. “Combined with techniques for labeling sex chromosomes in sperm, we may even be able to selectively breed males or females in experimental animals and livestock.”

###

This research was posted online in Scientific Reports on 1 June 2020.

[Source]

Nakao, S., Takeo, T., Watanabe, H., Kondoh, G., & Nakagata, N. (2020). Successful selection of mouse sperm with high viability and fertility using microfluidics chip cell sorter. Scientific Reports, 10(1). doi:10.1038/s41598-020-65931-z

Media Contact
J. Sanderson & N. Fukuda
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-65931-z

Tags: Agricultural Production/EconomicsBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyDevelopmental/Reproductive BiologyFertility
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Chemical modification of RNA could play key role in polycystic kidney disease

April 13, 2021
IMAGE

UMass Amherst joins partnership to develop sustainable food products

April 13, 2021

UBCO engineer cautions pregnant women about speed bumps

April 13, 2021

NIH trial of anti-CD14 antibody to treat COVID-19 respiratory disease begins

April 13, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyEcology/EnvironmentChemistry/Physics/Materials SciencesPublic HealthClimate ChangeMedicine/HealthMaterialsTechnology/Engineering/Computer SciencecancerGeneticsCell BiologyInfectious/Emerging Diseases

Recent Posts

  • Superbug killer: New nanotech destroys bacteria and fungal cells
  • Rapid decreases in resting heart rate from childhood to adulthood may indicate heart trouble ahead
  • Dueling evolutionary forces drive rapid evolution of salamander coloration
  • Cascading effects of noise on plants persist over long periods and after noise is removed
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In