• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A novel sperm selection technology to increase success rates of in vitro fertilization

Bioengineer by Bioengineer
July 2, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

LEFT: Mouse sperm collected by a conventional cell sorter. Motility cannot be maintained and sperm cannot advance.

Motile sperm are difficult to collect with a conventional cell sorter because they are vulnerable to physical damage. A research collaboration between Kumamoto and Kyoto Universities in Japan has developed a technique that uses a cell sorter with microfluidic chip technology to reduce cell damage and improve in vitro fertilization (IVF) rates. This research is expected to increase IVF rates to improve production of experimental animals and livestock, and could be used as a fertility treatment in human reproductive medicine.

It is important to select fertile sperm with good motility to obtain high IVF rates. Conventional cell sorters use flow cytometry to separate specific cells by type, and can be used to select sperm. However, since sperm cells are susceptible to physical damage, it is extremely difficult to separate them without effecting motility.

To reduce sperm cell damage, Professor Toru Takeo’s research team at Kumamoto University tried to develop a sperm selection technique using a cell sorter with microfluidic chip technology that reduces detrimental effects to cells. Microfluidic devices have minute channel structures with a width and depth between several to several-hundreds of micrometers and are widely used in chemical and biotechnology research.

While investigating the optimum separation conditions of sperm from a culture medium with their device, the researchers successfully collected mouse sperm that maintained motility. Furthermore, IVF using sperm collected with this device produced fertilized eggs and the embryos developed into neonatal mice after being transplanted into female mice.

This new technology can also be used to improve IVF. At the end stage of maturation, before egg penetration and fertilization, sperm undergo morphological and physiological changes called the acrosome reaction that makes them ready to fertilize an egg. To test whether they could increase fertility, researchers prepared a fluorescent substance that binds to fertile sperm and used the device to sort them from non-fertile sperm. Comparison IVF experiments revealed that the fertile sperm had a higher fertilization rate than the non-fertile sperm.

“We expect that our research can be used to increase the success rate of IVF in animals, and for fertility treatments in human reproductive medicine,” said Prof. Takeo. “Combined with techniques for labeling sex chromosomes in sperm, we may even be able to selectively breed males or females in experimental animals and livestock.”

###

This research was posted online in Scientific Reports on 1 June 2020.

[Source]

Nakao, S., Takeo, T., Watanabe, H., Kondoh, G., & Nakagata, N. (2020). Successful selection of mouse sperm with high viability and fertility using microfluidics chip cell sorter. Scientific Reports, 10(1). doi:10.1038/s41598-020-65931-z

Media Contact
J. Sanderson & N. Fukuda
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-65931-z

Tags: Agricultural Production/EconomicsBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyDevelopmental/Reproductive BiologyFertility
Share12Tweet8Share2ShareShareShare2

Related Posts

Gut Fungi and Microbes Linked to Lupus Disease

November 29, 2025

Beyond BRCA: Decoding High-Grade Serous Ovarian Cancer

November 29, 2025

Gender Influences on Substance Use Treatment Success

November 29, 2025

Orthodontic Pain Alters Brain, Triggers Anxiety Responses

November 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Kiwi Fruit Signals Perinatal Testicular Torsion Risk

Gut Fungi and Microbes Linked to Lupus Disease

Beyond BRCA: Decoding High-Grade Serous Ovarian Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.