• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A new tractor beam technology aims to minimize biopsy trauma

by
July 19, 2024
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at TMOS, the ARC Centre of Excellence for Transformative Meta-Optical Systems, have taken an important first step in the development of metasurface-enabled tractor beams—rays of light that can pull particles toward it, a concept that fictional tractor beams featured in science fiction are based on.

High Efficiency Triple-Helix Solenoid Beam Generated by Dielectric Metasurface Cover Art

Credit: Credit University of Melbourne

Researchers at TMOS, the ARC Centre of Excellence for Transformative Meta-Optical Systems, have taken an important first step in the development of metasurface-enabled tractor beams—rays of light that can pull particles toward it, a concept that fictional tractor beams featured in science fiction are based on.

In research published in ACS Photonics today, the University of Melbourne team describes their solenoid beam that is generated using a silicon metasurface. Previous solenoid beams have been created by bulky special light modulators (SLMs), however the size and weight of these systems prevent the beams being used in handheld devices. The metasurface is a layer of nanopatterned silicon only about 1/2000 of a millimetre thick. The team hopes that one day it could be used to take biopsies on a non-invasive manner, unlike current methods such as forceps that cause trauma to the surrounding tissues.

Beams of light tend to exert a pushing force, moving particles away from the light source. Solenoid beams have been proven to draw particles toward the light source. Consider the way a drill works, pulling wood shavings up the drill bit. Solenoid beams work similarly.

This particular solenoid beam has several benefits over previously generated solenoid beams in that the required conditions of the input beam are more flexible than with previous beams, it doesn’t require an SLM, and the size, weight and power requirements are significantly less than previous systems.

The metasurface was created by mapping the phase hologram of the desired beam. This was used to create a pattern. The metasurface was then fabricated from silicon using electron beam lithography and reactive ion etching. When the input beam, in this case a Gaussian beam, filters through the metasurface, most of it (approximately 76%) is converted into a solenoid beam and bends away from the unconverted beam, allowing the researchers to work with it without obstruction. They were able to characterize the beam at a distance of 21 centimeters.

Lead researcher Maryam Setareh says, “The compact size and high efficiency of this device could lead to innovative applications in the future. The ability to pull particles using a metasurface might have the potential to impact the field of biopsy by potentially reducing pain through less invasive methods.”

Setareh says, “We are excited to investigate the performance of our device in particle manipulation, which could offer valuable insights.”

Chief Investigator Ken Crozier says, “The next stage of this research will be to experimentally demonstrate the beam’s ability to pull particles, and we’ll be excited to share those results when they’re available.”

Crozier says “This work opens new possibilities for using light to exert forces on tiny objects”

For more information about this research, please contact [email protected]



Journal

ACS Photonics

DOI

10.1021/acsphotonics.4c00874

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

High Efficiency Triple-Helix Solenoid Beam Generated by Dielectric Metasurface

Article Publication Date

17-Jul-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Maternal BMI’s Impact on Offspring Metabolism Revealed

July 16, 2025
Triggering Bacterial Calcification to Combat MRSA

Triggering Bacterial Calcification to Combat MRSA

July 15, 2025

Microbiota Boosts Tumor Immunity via Dendritic Cells

July 14, 2025

Socioeconomic Status, Sex Affect BMI Across Distribution

July 14, 2025

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maternal BMI’s Impact on Offspring Metabolism Revealed

Flowering Plant Gene Regulation: Recruitment, Rewiring, Conservation

Triggering Bacterial Calcification to Combat MRSA

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.