• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new, positive approach could be the key to next-generation, transparent electronics

Bioengineer by Bioengineer
April 5, 2021
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Filling a crucial gap in the materials spectrum

IMAGE

Credit: RMIT University

A new study, out this week, could pave the way to revolutionary, transparent electronics.

Such see-through devices could potentially be integrated in glass, in flexible displays and in smart contact lenses, bringing to life futuristic devices that seem like the product of science fiction.

For several decades, researchers have sought a new class of electronics based on semiconducting oxides, whose optical transparency could enable these fully-transparent electronics.

Oxide-based devices could also find use in power electronics and communication technology, reducing the carbon footprint of our utility networks.

A RMIT-led team has now introduced ultrathin beta-tellurite to the two-dimensional (2D) semiconducting material family, providing an answer to this decades-long search for a high mobility p-type oxide.

“This new, high-mobility p-type oxide fills a crucial gap in the materials spectrum to enable fast, transparent circuits,” says team leader Dr Torben Daeneke, who led the collaboration across three FLEET nodes.

Other key advantages of the long-sought-after oxide-based semiconductors are their stability in air, less-stringent purity requirements, low costs and easy deposition.

“In our advance, the missing link was finding the right, ‘positive’ approach,” says Torben.

Positivity has been lacking

There are two types of semiconducting materials. ‘N-type’ materials have abundant negatively-charged electrons, while ‘p-type’ semiconductors possess plenty of positively-charged holes.

It’s the stacking together of complementary n-type and p-type materials that allows electronic devices such as diodes, rectifiers and logic circuits.

Modern life is critically reliant on these materials since they are the building blocks of every computer and smartphone.

A barrier to oxide devices has been that while many high-performance n-type oxides are known, there is a significant lack of high-quality p-type oxides.

Theory prompts action

However in 2018 a computational study revealed that beta-tellurite (β-TeO2) could be an attractive p-type oxide candidate, with tellurium’s peculiar place in the periodic table meaning it can behave as both a metal and a non-metal, providing its oxide with uniquely useful properties.

“This prediction encouraged our group at RMIT University to explore its properties and applications,” says Dr Torben Daeneke, who is a FLEET associate investigator.

Liquid metal – pathway to explore 2D materials

Dr Daeneke’s team demonstrated the isolation of beta-tellurite with a specifically developed synthesis technique that relies on liquid metal chemistry.

“A molten mixture of tellurium (Te) and selenium (Se) is prepared and allowed to roll over a surface,” explains co-first author Patjaree Aukarasereenont.

“Thanks to the oxygen in ambient air, the molten droplet naturally forms a thin surface oxide layer of beta-tellurite. As the liquid droplet is rolled over the surface, this oxide layer sticks to it, depositing atomically thin oxide sheets in its way.”

“The process is similar to drawing: you use a glass rod as a pen and the liquid metal is your ink,” explains Ms Aukarasereenont, who is a FLEET PhD student at RMIT.

While the desirable β-phase of tellurite grows below 300 °C, pure tellurium has a high melting point, above 500 °C. Therefore, selenium was added to design an alloy that has a lower melting point, making the synthesis possible.

“The ultrathin sheets we obtained are just 1.5 nanometres thick – corresponding to only few atoms. The material was highly transparent across the visible spectrum, having a bandgap of 3.7 eV which means that they are essentially invisible to the human eye” explains co-author Dr Ali Zavabeti.

Assessing beta-tellurite: up to 100 times faster

To assess the electronic properties of the developed materials, field-effect transistors (FETs) were fabricated.

“These devices showed characteristic p-type switching as well as a high hole mobility (roughly 140 cm2V-1s-1), showing that beta-tellurite is ten to one hundred times faster than existing p-type oxide semiconductors. The excellent on/off ratio (over 106) also attests the material is suitable for power efficient, fast devices” Ms Patjaree Aukarasereenont said.

“The findings close a crucial gap in the electronic material library,” Dr Ali Zavabeti said.

“Having a fast, transparent p-type semiconductor at our disposal has the potential to revolutionise transparent electronics, while also enabling better displays and improved energy-efficient devices.”

The team plans to further explore the potential of this novel semiconductor. “Our further investigations of this exciting material will explore integration in existing and next-generation consumer electronics,” says Dr Torben Daeneke.

###

The study

The paper High mobility p-type semiconducting two-dimensional β-TeO2 was published in Nature Electronics in April 2021. (DOI: 10.1038/s41928-021-00561-5)

FLEET researchers from RMIT, ANU and UNSW collaborated with colleagues from Deakin University and the University of Melbourne. FLEET’s Matthias Wurdack (ANU) performed 2D nanosheet transfer experiments while Kourosh Kalantar-zadeh (UNSW) assisted with analysis of material and device characteristics.

This project was supported by the Australian Research Council (Centre of Excellence and DECRA programs), the authors also acknowledge support from RMIT University’s Microscopy and Microanalysis Facility (RMMF), the RMIT University’s MicroNano Research Facility (MNRF) and funding received via the McKenzie postdoctoral fellowship program from the University of Melbourne.

Media Contact
Torben Daeneke
[email protected]

Original Source

http://www.fleet.org.au/blog/a-new-positive-approach-could-be-the-key-to-next-generation-transparent-electronics/

Related Journal Article

http://dx.doi.org/10.1038/s41928-021-00561-5

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsHardwareIndustrial Engineering/ChemistryMaterialsNanotechnology/MicromachinesSuperconductors/SemiconductorsTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Group Therapy Boosts Recovery in Elderly Depression

Evaluating Biosimilar Trastuzumab for Breast Cancer in Thailand

Decoding Phantom Limb Movements via Intraneural Signals

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.