• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A new plant-based system for the mass production of allergens for immunotherapy

Bioengineer by Bioengineer
May 11, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba develop a novel high-yield method for the efficient production of birch pollen allergen for immunotherapeutic purposes

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Allergies can significantly affect health and quality of life. While allergen immunotherapy provides long-lasting therapeutic relief to people suffering from environmental allergies, the therapy can last several years and requires large amounts of allergen. Now, researchers from the University of Tsukuba developed a novel system that enables the mass production of the major birch pollen allergen Bet v 1 in plant leaves in just a matter of days. In a new study published in Frontiers in Plant Science, they showed that their system not only produces large amounts of Bet v 1, but the purified protein was also highly reactive towards the IgE antibodies in sera from individuals with birch pollen allergy.

“The idea of allergen immunotherapy is to desensitize the body’s response to the allergen by exposing patients to it in gradually increasing amounts,” says corresponding author of the study Professor Kenji Miura. “Because a significant drawback is the difficult, expensive and low-yield production of allergens, our goal was to develop a new system that allows for the rapid and massive production of allergens that can be used in the clinical setting.”

To achieve their goal, the researchers turned to their previously established “Tsukuba system,” which makes use of a method called agroinfiltration. They first introduced the gene for Bet v 1 into a specific type of bacteria called Agrobacterium tumefaciens and let them grow. They then immersed leaves of the plant Nicotiana benthamiana into the bacterial solution to bring the bacteria into close contact with the plant, so the bacteria could transfer the Bet v 1 gene to plant cells, which in turn started producing the protein. To test the quality of their product, the researchers also produced the protein in Brevibacillus brevis, which is a standard bacterial host for protein production.

“We were able to purify 1.2mg of Bet v 1 protein from 1g leaves in just 5 days,” explains Professor Miura. “This is a relatively large amount that is otherwise difficult to achieve using standard methods. Our next goal was to test whether our protein was immunogenic, which is a prerequisite for immunotherapy.”

The researchers isolated sera from individuals with birch pollen allergy and mixed them with Bet v 1 protein purified from plants and bacteria. In both cases, the researchers were able to show that Bet v 1-specific IgE from the patients’ sera, which is the antibody causing the allergy, was strongly reactive to their proteins.

“These are striking results that show how functional allergens can be produced in a fast and efficient way,” says Professor Miura. “Given that immunotherapy requires 5-20μg allergen per treatment over several years, our findings could offer an opportunity to significantly improve allergen immunotherapy.”

###

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fpls.2020.00344

Tags: DermatologyImmunology/Allergies/AsthmaMedicine/HealthPulmonary/Respiratory Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Social Exposome Links to Dementia in Latin America

September 11, 2025

Comparative Pharmacokinetics of Levamisole Across Species

September 11, 2025

Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

September 11, 2025

Role Ambiguity Impacting Nursing Interns’ Clinical Success

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Social Exposome Links to Dementia in Latin America

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

Comparative Pharmacokinetics of Levamisole Across Species

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.