• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, May 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A new 'atlas' of genetic influences on osteoporosis

Bioengineer by Bioengineer
December 31, 2018
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Identifying more than 500 genetic determinants of bone mineral density, researchers expect to provide new opportunities for the development of novel drugs to prevent or treat osteoporosis

A ground-breaking new study led by researchers from the Lady Davis Institute (LDI) at the Jewish General Hospital (JGH) has succeeded in compiling an atlas of genetic factors associated with estimated bone mineral density (BMD), one of the most clinically relevant factors in diagnosing osteoporosis. The paper, published in Nature Genetics, identifies 518 genome-wide loci, of which 301 are newly discovered, that explain 20% of the genetic variance associated with osteoporosis. Having identified so many genetic factors offers great promise for the development of novel targeted therapeutics to treat the disease and reduce the risk of fracture.

“Our findings represent significant progress in highlighting drug development opportunities,” explains Dr. Brent Richards, the lead investigator, a geneticist at the LDI’s Centre for Clinical Epidemiology who treats patients with osteoporosis in his practice at the JGH. “This set of genetic changes that influence BMD provides drug targets that are likely to be helpful for osteoporotic fracture prevention.”

Osteoporosis is a very common age-related condition characterized by the progressive reduction of bone strength, which results in a high risk of fracture. Especially among older patients, fractures can have severe consequences, including the risk of mortality. Among all sufferers, fractures impose major burdens of hospitalization and extended rehabilitation. As the population ages, the urgency of improving preventive measures becomes all the more intense.

“We currently have few treatment options,” said Dr. Richards, a Professor of Medicine, Human Genetics, and Epidemiology and Biostatistics at McGill University, “and many patients who are at high risk of fractures do not take current medications because of fear of side effects. Notwithstanding that it is always better to prevent than to treat. We can prescribe injectables that build bone, but they are prohibitively expensive. We have medications that prevent loss of bone, but they must be taken on a strict schedule. As a result, the number of people who should be treated, but are not, is high. Therefore, we believe that we will have greater success in getting patients to follow a treatment regimen when it can be simplified.”

This was the largest study ever undertaken of the genetic determinants of osteoporosis, assessing more than 426,000 individuals in the UK Biobank. After analyzing the data, the researchers further refined their findings to isolate a set of genes that are very strongly enriched for known drug targets. This smaller set of target genes will allow drug developers to narrow their search for a solution to the clinical problem of preventing fractures in those people who are predisposed to osteoporotic fractures. Animal models have already proven the validity of some of these genes.

“Although we found many genetic factors associated with BMD, the kind of precision medicine that genetics offers should allow us to hone in on those factors that can have the greatest effect on improving bone density and lessening the risk of fracture,” said Dr. John Morris, also from the LDI and McGill University, the lead author on the study.

###

“An atlas of genetic influences on osteoporosis in humans and mice,” by John A. Morris et al
Nature Genetics

For media inquiries, and to arrange interviews with Dr. Richards contact:

Tod Hoffman

Research Communications Officer

Lady Davis Institute

Tel.: 514-340-8222 x 28661

Email: [email protected]

For more about the Lady Davis Institute: http://www.ladydavis.ca

For more about the Jewish General Hospital: http://www.jgh.ca

Media Contact
Tod Hoffman
[email protected]
514-340-8222 x28661

Tags: AgingGenesGeneticsGerontologyMedicine/HealthOrthopedic Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Stem Cell-Derived Islet Survival in Hypoxia

Boosting Stem Cell-Derived Islet Survival in Hypoxia

May 23, 2025
Overview of the study exploring the link between sarcopenia and cognitive decline

Muscle Quality: A Potential Early Indicator of Cognitive Decline

May 23, 2025

Parallel Reporter and Transgenic Assays Reveal Neuronal Enhancers

May 23, 2025

Nanovaccine Boosts Personalized Cancer Immunotherapy with Neoantigens

May 23, 2025
Please login to join discussion

POPULAR NEWS

  • Effects of a natural ingredients-based intervention targeting the hallmarks of aging on epigenetic clocks, physical function, and body composition: a single-arm clinical trial

    Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    91 shares
    Share 36 Tweet 23
  • Analysis of Research Grant Terminations at the National Institutes of Health

    79 shares
    Share 32 Tweet 20
  • Health Octo Tool Links Personalized Health, Aging Rate

    68 shares
    Share 27 Tweet 17
  • Universe Fades Faster Than Expected—Yet Still Over Vast Timescales

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cluster-Root Secretions Enhance Phosphorus Accessibility in Nutrient-Poor Soils

Boosting Stem Cell-Derived Islet Survival in Hypoxia

Assessing Breast Cancer Care Quality in Iran

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.