• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A methodological leap in the exploration of memory

Bioengineer by Bioengineer
July 27, 2022
in Biology
Reading Time: 3 mins read
0
Mobility of glutamate receptors
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Neurons communicate with each other across synapses, areas of close contact where neurotransmitter molecules released from one neuron act on receptors embedded in the membrane of the opposite neuron. Previous research conducted by the team of Daniel Choquet, researcher at the CNRS and Director of the Interdisciplinary Institute for Neurosciences (CNRS/University of Bordeaux) had discovered that these receptors are not stationary, but instead move constantly in the membrane. The same scientists suggested and indirectly demonstrated that this movement modifies the number of receptors in a synapse at a given time to modulate the effectiveness of synaptic transmission and, as a result, certain types of learning and memory.1 Until now, however, it was not possible to observe receptor mobility in situ, in situations more natural than neuron cultures. This has now been achieved: thanks to the development of a comprehensive ‘toolbox’, scientists have been able to establish that this mobility exists in intact brain tissue, and that it is indispensable for certain types of memory, such as the contextual fear memory tested in this study. This ‘toolbox’ consists of a new animal model, improved high-resolution imaging technology and techniques for labelling and controlling receptor dynamics. It will allow the study of any region of the brain in addition to the hippocampus, can be transposed to other types of receptors, and will be used by the team to study the possible role of receptor mobility in intellectual disabilities and autism spectrum disorders.

Mobility of glutamate receptors

Credit: © Benjamin Compans and Daniel Choquet / IINS / CNRS-Université de Bordeaux

Neurons communicate with each other across synapses, areas of close contact where neurotransmitter molecules released from one neuron act on receptors embedded in the membrane of the opposite neuron. Previous research conducted by the team of Daniel Choquet, researcher at the CNRS and Director of the Interdisciplinary Institute for Neurosciences (CNRS/University of Bordeaux) had discovered that these receptors are not stationary, but instead move constantly in the membrane. The same scientists suggested and indirectly demonstrated that this movement modifies the number of receptors in a synapse at a given time to modulate the effectiveness of synaptic transmission and, as a result, certain types of learning and memory.1 Until now, however, it was not possible to observe receptor mobility in situ, in situations more natural than neuron cultures. This has now been achieved: thanks to the development of a comprehensive ‘toolbox’, scientists have been able to establish that this mobility exists in intact brain tissue, and that it is indispensable for certain types of memory, such as the contextual fear memory tested in this study. This ‘toolbox’ consists of a new animal model, improved high-resolution imaging technology and techniques for labelling and controlling receptor dynamics. It will allow the study of any region of the brain in addition to the hippocampus, can be transposed to other types of receptors, and will be used by the team to study the possible role of receptor mobility in intellectual disabilities and autism spectrum disorders.

This research was supported by an ERC Advanced grant awarded to Daniel Choquet.

1 Synaptic receptor mobility: discovery of a new mechanism for controlling memory (13 September 2017)

To find out more, read this interview with Daniel Choquet on CNRS News: How imaging is revolutionising biology (October 2021).



Journal

Science Advances

DOI

10.1126/sciadv.abm5298

Method of Research

Experimental study

Subject of Research

Animals

Article Title

High-resolution imaging and manipulation of endogenous AMPA receptor surface mobility during synaptic plasticity and learning

Article Publication Date

27-Jul-2022

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.