• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A filter for cleaner qubits

Bioengineer by Bioengineer
March 6, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Department of Physic,
College of Liberal Arts and Sciences,TMDU


Researchers at the Tokyo Medical and Dental University (TMDU), RIKEN, and the University of Tokyo propose an improved method for isolating the qubits in a quantum computer from the external environment, which may help usher in the era of practical quantum computing

Tokyo, Japan – A research team at the Tokyo Medical and Dental University (TMDU), RIKEN, and the University of Tokyo have demonstrated how to increase the lifetime of qubits inside quantum computers by using an additional “filter” qubit. This work may help make higher fidelity quantum computers that can be used in financial, cryptographic, and chemistry applications.

Quantum computers are poised to make a large impact in a variety of fields, from internet security to drug development. Instead of being limited to binary 0s and 1s of classical computers, the qubits in quantum computers can take on values that are arbitrary superpositions of the two. This allows quantum computers the potential to solve certain problems, like cracking cryptographic ciphers, much faster than current machines.

However, there is a fundamental tradeoff between the lifetime of the qubit superpositions and the processing speed. This is because the qubits must be carefully shielded from interacting with the environment, or the fragile superposition will snap back to being just a one or zero in a process called decoherence. To delay this loss of quantum fidelity, qubits in quantum computers are coupled only weakly to the control line through which the qubit control pulses are applied. Unfortunately, such a weak coupling limits the speed that computations can be run.

Now, the team at the Tokyo Medical and Dental University (TMDU) theoretically show how coupling a second “filter” qubit to the control line can greatly reduce the noise and spontaneous radiative losses that lead to decoherence. This allows the connections to be strong, which lends itself to faster cycle times.

“In our solution, the filter qubit acts like a nonlinear mirror, which completely reflects radiation from the qubit due to destructive interference but transmits strong control pulses due to absorption saturation” says first author Kazuki Koshino.

This research helps bring about a future in which quantum computers can be found in every business and research lab. Many operational research firms would like to use quantum computers to solve optimization problems that were considered too intensive for conventional computers, while chemists would like to use them to simulate the motion of atoms inside molecules.

“Quantum computers are improved day by day by companies including IBM and Google. As they become faster and more robust, they can be even more widespread,” says senior author Yasunobu Nakamura.

###

The work is published in Physical Review Applied as “Protection of a qubit via subradiance: A Josephson quantum filter” (DOI:10.1103/PhysRevApplied.13.014051)

Media Contact
Kazuki KOSHINO
[email protected]

Original Source

http://www.tmd.ac.jp/english/press-release/20200128_2/index.html

Related Journal Article

http://dx.doi.org/10.1103/PhysRevApplied.13.014051

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsMaterialsNanotechnology/MicromachinesOpticsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

November 4, 2025
Innovative Smart Hydrogel Emulates Skin Repair, Accelerating Healing of Diabetic Wounds

Innovative Smart Hydrogel Emulates Skin Repair, Accelerating Healing of Diabetic Wounds

November 4, 2025

Chemoenzymatic Synthesis of Lariat Lipopeptides Revolutionized

November 4, 2025

PKU Scientists Reveal Climate Effects and Future Patterns of Hailstorms in China

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling How Sugars Influence the Inflammatory Disease Process

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.