• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, December 10, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A deep-sea fish inspired researchers to develop supramolecular light-driven machinery

Bioengineer by Bioengineer
November 17, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The vision system, evolved over millions of years, is highly complex. To make vision sensitive throughout the whole range of visible wavelengths, Nature employs a supramolecular chemistry approach. The visual pigment, cis-retinal, changes its shape upon capturing a photon. This shape transformation is accompanied by changes in the supramolecular organization of the surrounding proteins, subsequently triggering a cascade of chemical signaling events that get amplified and eventually lead to visual perception in the brain.

Disequilibration by sensitization under confinement (DESC)

Credit: Rafal Klajn

The vision system, evolved over millions of years, is highly complex. To make vision sensitive throughout the whole range of visible wavelengths, Nature employs a supramolecular chemistry approach. The visual pigment, cis-retinal, changes its shape upon capturing a photon. This shape transformation is accompanied by changes in the supramolecular organization of the surrounding proteins, subsequently triggering a cascade of chemical signaling events that get amplified and eventually lead to visual perception in the brain.

“Some deep-sea fish have evolved antenna-like molecules capable of absorbing photons in the red wavelength range, whose abundance at great depths is close to zero. After absorbing a photon, this antenna molecule transfers its energy to the nearby retinal molecule, thus inducing its conformational change from the cis to trans-retinal. In synthetic systems, such process would enable using low-energy light for applications in for instance energy storage or controlled drug release”, explains the lead author of the work Prof. Rafal Klajn from the Weizmann Institute of Science.

Inspired by this phenomenon, the researchers developed a superior supramolecular machine capable to efficiently convert widely used synthetic photoswitchable molecules – azobenzenes – from the stable to the metastable conformation with almost any wavelength of visible light. The approach includes a metal–organic cage filled with one azobenzene molecule and one light-absorbing antenna molecule, the sensitizer. In close confinement inside the supramolecular cage, chemical processes that would not take place in normal conditions, become possible.

“A common problem of azobenzenes is that they cannot efficiently undergo photoswitching from the stable trans form to the metastable cis form upon low-energy red and near-infrared light, but the process has to be driven by UV light. This substantially limits their applications in fields such as photocatalysis or photopharmacology. Now, using the supramolecular caging approach we can reach almost quantitative trans-to-cis isomerization with any color of visible range,” says Dr. Nikita Durandin, Academy of Finland Research Fellow in Supramolecular Chemistry of Bio- and Nanomaterials group, who has been working with sensitization approaches in Tampere University for the last 7 years.

“Time-resolved spectroscopic studies done at Tampere University revealed that the photochemical processes triggering the isomerization happen superfast, in the nanosecond range. In other words, almost 1 billion times faster than the blink of your eyes,” continues Dr. Tero-Petri Ruoko, Marie Sklodowska-Curie Fellow in Smart Photonics Materials group, and expert in ultrafast spectroscopy.

“Once you shine light on this supramolecular cage, it quickly converts almost all of the trans isomers into cis isomers. Simple mixing of components and light that matches the absorption profile of the sensitizer is enough to make this machinery work,” he adds.

According to Prof. Arri Priimägi, the leader of Smart Photonics Materials group specializing in light-active materials, the study presents a new approach for activating photoresponsive molecules with low-energy light, pushing them out from their thermodynamic equilibrium utilizing chemistry that only takes place under confinement.

It took millions of years of evolution for the eye of deep-sea fish to emerge. Learning from that, the research led by Rafal Klajn’s group extended these concepts to synthetic materials in less than 5 years.

“We are already working on the next generation of the light-driven supramolecular machines, aiming at applying the developed methodologies in soft robotics and light-activated drug delivery systems,” concludes Priimägi.

The scientific article on the research “Disequilibrating azobenzenes by visible-light sensitization under confinement” has been published in the journal Science.



Journal

Science

DOI

10.1126/science.adh9059

Article Title

Disequilibrating azobenzenes by visible-light sensitization under confinement

Article Publication Date

22-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Normal and enhanced aurora

When is an aurora not an aurora?

December 8, 2023
Rhodamine dyes

A fork in the rhod: Janelia researchers unveil comprehensive collection of rhodamine-based fluorescent dyes

December 8, 2023

Atlantic Ocean near Bermuda is warmer and more acidic than ever, 40 years of observation show

December 8, 2023

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing

December 7, 2023

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    85 shares
    Share 34 Tweet 21
  • Photonic chip that ‘fits together like Lego’ opens door to semiconductor industry

    36 shares
    Share 14 Tweet 9
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ASH: Targeted oral therapy reduced disease burden and improved symptoms for patients with rare blood disorder

TTUHSC’s ARPA-H membership will spur innovation, improve access for West Texas patients

Tracing how the infant brain responds to touch with near-infrared spectroscopy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In