• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, February 6, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A breath of fresh air for emphysema research

Bioengineer by Bioengineer
July 19, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Department of Immune Regulation,TMDU

Tokyo, Japan – Chronic obstructive pulmonary disease (COPD) causes illness and death worldwide. It is characterized by destruction of the walls of tiny air sacs in the lungs, known as emphysema, and a decline in lung function. Little has been known about the mechanisms by which it begins to develop. But now, researchers from Japan have found a protein that promotes the development of the early stages of emphysema, with the potential to be a therapeutic target.

COPD can be triggered by environmental factors such as cigarette smoking that result in lung inflammation. The development of inflammation involves the movement of molecules inside cells, and this “intracellular trafficking” is known to be associated with some diseases. The team searched for COPD-related proteins that are involved in trafficking and identified a protein called FCHSD1, which is associated with some diseases but with no currently known role in lung function.

It is possible to create a mouse model of emphysema by treating mice with an enzyme called elastase. The team developed a mouse line that was missing the FCHSD1 protein and studied the responses of these mice in comparison with normal mice when emphysema was induced. Normal mice showed a large increase in FCHSD1 after treatment, while mice lacking FCHSD1 were protected from the development of emphysema. These mice showed less airspace expansion owing to damage to the air sacs in the lungs, and had less inflammation and cell death, known as apoptosis.

The researchers went on to investigate the molecular mechanism by which FCHSD1 acts. A protein called NRF2 moves into the nucleus in response to stress and acts to defend against it. However, FCHSD1 binds to NRF2 and prevents it moving into the nucleus. “Mice with a FCHSD1 deficiency showed enhanced nuclear translocation of NRF2 and a smaller reduction in SIRT1 levels, which is seen to occur as emphysema develops,” explains lead author Takahiro Kawasaki, “and this reduced inflammation and apoptosis of lung cells.”

A potential therapy for COPD could therefore be to increase the activity of NRF2 to counteract FCHSD1. There are treatments currently available that target NRF2, and it may be that inhibiting FCHSD1 at the same time as targeting NRF2 could make these treatments more effective and prevent systemic complications. “Our findings may also lead to a specific therapeutic strategy to ameliorate, or even halt, the progression of emphysema by inhibiting FCHSD1,” says Takashi Satoh, senior author of the paper.

COPD is a highly significant disease. The discovery of this mechanism by which FCHSD1 acts to promote the development of emphysema could lead to new treatments for many people.

###

The authors declare no competing interests. This work was supported by: the Japan Science and Technology Agency (JST) through funding for Specially Promoted Research (15H05704), a Grant-in-Aid for Young Scientists (A) (16H06234), a Grant-in-Aid for Challenging Exploratory Research (T17K195570), and a Grant-in-Aid for Scientific Research on Innovative Areas (18H05032); the Visionary Research Fund from Takeda Science Foundation and the Joint research chair of innate immunity supported by Otsuka Pharmaceutical Co., Ltd.; PRIME (17gm6110002h0001), ACT-M (17im0210108h0001), and the Research Program on Hepatitis (18fk0310106h0002 and 1 18fk0210041h0001) from the Japan Agency for Medical Research and Development, AMED.

The article, “Loss of FCHSD1 leads to amelioration of chronic obstructive pulmonary disease”, was published in PNAS at DOI: 10.1073/pnas.2019167118.

Media Contact
Takashi Satoh
[email protected]

Original Source

https://www.tmd.ac.jp/english/press-release/20210628-2/

Related Journal Article

http://dx.doi.org/10.1073/pnas.2019167118

Tags: Cell BiologyMedicine/HealthMolecular BiologyMortality/LongevityPulmonary/Respiratory Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Seven newly described species of whitefish

Seven new species of whitefish described in Central Switzerland

February 6, 2023
model plant Arabidopsis thaliana

Documenting plant organ development

February 6, 2023

Keanu Reeves – the molecule

February 6, 2023

World first study sheds light on why microbes in the deep ocean live without sunlight

February 6, 2023
Please login to join discussion

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

$1.6M gift to Markey Cancer Center will establish endowed chair in gynecologic oncology

VUMC’s ‘Shed-MEDS’ protocol can reduce risk of drug interactions in older people

Scientists pinpoint protein that helps cancer-causing viruses evade immune response

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In