• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

A breakthrough for brain tumor drug development

Bioengineer by Bioengineer
February 5, 2019
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A breakthrough for brain tumor drug development and personalized medicine published today in Nature

Credit: Simon Plummer MicroMatrices CEO

A breakthrough for brain tumor drug development and personalised medicine published today in Nature Scientific Reports.

24,000 patients are diagnosed with brain tumors every year with the 5yr survival for high grade glioblastomas (GBM) only 5%, with median survival of 15 months. These poor statistics have remained static for 30 years due in part to a lack of human-relevant preclinical models for testing new drugs. In addition, high levels of inter-individual cellular and molecular heterogeneity of disease means each patient has unique treatment requirements, however the rapid pace of disease progression allows little time for individual assessments.

To address these challenges a multidisciplinary team of researchers in a public/private collaboration (MicroMatrices, Johns Hopkins University, the Mayo Clinic, and Perkin Elmer) have developed and evaluated a human induced pluripotent stem cell (IPSC) derived 3D organoid model for drug testing consisting of differentiated neurons and other non-neuronal brain cells (glial cells, astrocytes and oligodendrocytes) grown alongside patient-derived glioblastoma tumor cells. Accurate drug efficacy measurements were facilitated through the use of a microTMA-based high throughput histology platform (SpheroMatricesTM).

To investigate the potential of this platform, two chemotherapeutic agents were tested: temozolomide (TMZ), the current front line treatment option for glioblastoma, and an experimental therapy doxorubicin (DOX).

The study results indicated the system could predict a clinical response to TMZ and also demonstrated anti-tumor efficacy with DOX . Furthermore as the microTMA technology allows for multiplexing of different measurements, it was also observed that DOX acted via selective killing of tumour cells (apoptosis) with little or no effect on normal brain cells.

This system can be adapted for use with publicly available libraries of glioblastoma patient-derived cell lines, paving the way for the creation of a more efficient discovery platform for new therapies, ultimately offering a more personalized approach by matching patients to therapies that are more likely to work clinically. In previous screens, the patient-derived cells were grown in immune-compromised mice, a model which cannot capitulate the environment of human tumours. By contrast, the organoid model system more closely mirrors a human-relevant microenvironment. In addition, the microTMA technology, by making multiple parallel measurements of efficacy end-points, produces quantitative data supporting mechanistic insights and informative biomarkers with greater potential to translate to the clinic.

Simon Plummer CEO of MicroMatrices said ‘this breakthrough study illustrates how human relevant 3D models can make an impact for drug development and personalised medicine’.

###

Media Contact
Simon Plummer
[email protected]
07-973-502-994

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-38130-0

Tags: cancerMedicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

City of Hope Names Renowned Lung Cancer Specialist Dr. Christine M. Lovly as Director of National Thoracic Oncology Program

City of Hope Names Renowned Lung Cancer Specialist Dr. Christine M. Lovly as Director of National Thoracic Oncology Program

November 7, 2025

Supervised Exercise Enhances Strength and Physical Performance in Advanced Breast Cancer Patients

November 7, 2025

Here’s a rewritten version of the headline for a science magazine post: “The Enzyme That Defies Expectations: When Chemistry Breaks the Rules” Let me know if you want it more formal, catchy, or simplified!

November 6, 2025

Moffitt Study Uncovers Mechanism to Ignite Immune Hotspots Targeting Tumors

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling μ-Opioid Receptor Signaling Plasticity

Enhancing Nursing Students’ Pressure Injury Assessment Skills

Recombination and Transposons Influence Chironomus riparius Diversity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.