• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The importance of 'edge populations' to biodiversity

Bioengineer by Bioengineer
December 18, 2018
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Protecting plants at the northern limit of their range may help species survive climate change

IMAGE

Credit: Hargreaves/McGill University


More than two-thirds of Canada’s biodiversity is made up of species that occur within the country’s borders only at the very northern edge of their range. Biologists have long debated how much effort should be dedicated to conserving these “edge populations.” One argument in their favour is that they may be especially well suited to lead northward range shifts for their species as the climate warms.

Evolutionary ecologists Anna Hargreaves of McGill University and Chris Eckert of Queens University set out to find answers using a small flowering plant, Rhinanthus minor (also known as yellow rattle). ‘Admittedly it’s not the most charismatic plant’ say Hargreaves, ‘but it’s fantastic experimentally; we can plant seeds anywhere in the fall and by next fall they’ve completed their whole lifecycle. That lets us test whether plants are adapted to the elevation they come from, and whether they could survive above where the species currently grows. Hard to do that with animals!’

In a three-year experiment spanning 1,200 metres of elevation in Alberta’s Rocky Mountains, the researchers transplanted more than 20 000 seeds among elevations to see whether plants found the highest up the mountains were best suited to colonize even higher elevations. To test whether cool summers prevent the species from growing higher up the slopes, they warmed the air around some experimental plants by enclosing them in plastic cones that act like mini-greenhouses.

Their findings, recently published in Ecology Letters, show that cool summers currently limit yellow rattle’s distribution, preventing it from growing at higher elevations. Plants from the species’ highest range edge have adapted to high-elevation summers by flowering earlier, so can make seeds where plants from lower elevations fail.

The experiments also yielded a surprising result: A high-elevation ‘super edge population’ from a nearby mountain outperformed all other populations in natural and warmed plots both at and above the species high-elevation range edge. So if this population has such great genes, why haven’t those super genes spread to other high-elevation populations that are only a kilometer away? Researchers think this is an example of winning genotypes getting trapped in isolated edge populations. If so, facilitating gene flow among edge populations might be a way to help them cope with environmental change.

Like most intensive experiments, this one focused on a single species. “Our results are important not because they predict what other species will do, but because they are the first to show unexpected patterns that we as biologists need to start considering,” Hargreaves says.

Three years of mountain fieldwork also produced some memorable moments. The field crew once scrambled up a chair-lift pole to evade a grizzly bear that ambled into the site to munch on berries. On another occasion, the researchers had to shovel snow to plant their last high-elevation sites for the season; then tobogganed downhill to get back to their car just before dark.

Yet at a time when fancy lab equipment and computer models increasingly dominate even ecological research, the project is also a reminder there’s sometimes no substitute for boots-on-the ground fieldwork.

“This study shows that important advances can still come – and sometimes can only come – from well-designed field experiments that require no expensive equipment, but creativity, vision and thousands of people hours,” Hargreaves says. “If we want to understand how the natural world works, we need to keep spending time in it.”

###

Local adaptation primes cold?edge populations for range expansion but not warming?induced range shifts, by Anna L. Hargreaves and Christopher G. Eckert is published in Ecology Letters, https://onlinelibrary.wiley.com/doi/full/10.1111/ele.13169

To contact the researcher directly: anna.hargreaves@mcgill.ca

Media Contact
Cynthia Lee
cynthia.lee@mcgill.ca
514-398-6754

Original Source

https://www.mcgill.ca/newsroom/channels/news/importance-edge-populations-biodiversity-292538

Tags: BiologyClimate ChangeClimate ScienceEarth ScienceGeographyPlant SciencesTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    52 shares
    Share 21 Tweet 13

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.