• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Nature's sweets

Bioengineer by Bioengineer
December 17, 2018
in Cancer
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Borrowing a natural recipe for sugar synthesis

IMAGE

Credit: Photo by rawpixel on Unsplash


Today, sugar has a villainous reputation. And while too much of the sweet stuff should be avoided, all living things need sugar to survive. “The biological universe is coated with sugars,” said Samuel M. Levi and Qiuhan Li, graduate students in Harvard University’s Department of Chemistry and Chemical Biology. “Cells, bacteria, viruses and other organisms use sugars as a means of communication, recognition, and even defense.” Nature literally runs on sugars.

Yet, like overzealous nutritionists, synthetic chemists usually avoid sugars. Nature, an expert chemist, can shift the sweets from one molecule to another with enviable finesse. But in the lab, scientists struggle to attach just one sugar molecule to another chemical unit, a process known as glycosylation. Researchers rely on this method to study biological processes and to create such important substances as pharmaceuticals and vaccines.

According to Levi and Li, “many methods to perform chemical glycosylation exist, [but] their use remains reserved for experts in carbohydrate chemistry.” So, to extend this expertise to non-specialists, the team looked to nature for guidance.

On its own, nature carries out glycosylation, and also makes DNA, RNA, proteins and other polymers with the help of phosphates. To induce glycosylations in the lab, most synthetic chemists choose faster-to-react halides and sulfinates over phosphates. So, while nature’s choice may be slow to react, they’re far more stable than the lab go-tos. What’s more, enzymes–the tiny sparks that ignite a reaction–can easily recognize phosphate-monomers, speeding the path to reaction and product.

But, until recently, researchers have failed to capitalize on these natural advantages. If an ingredient is slow to react, chemists give it a shove, often in the form of heat, energy, or a well-designed catalyst. Phosphates need a shove; and, without a suitable catalyst, scientists usually use high, volatile temperatures. Outside the lab, natural reactions use phosphates without the fiery fuss, but like a proud chef, nature guards her chemical secrets well. Now, in a paper published in the Proceedings of the National Academy of Sciences, Eric Jacobsen, Professor of Chemistry and Chemical Biology, along with Levi, Li, and Andreas R. Rötheli, have unearthed a natural secret: a “precisely designed hydrogen-bond-donor catalyst.”

The team discovered that, with this sturdy catalyst, phosphate binds “19 times more strongly than the chloride,” another common reaction ingredient. And, it can attach sugars to amino acids, natural products, and drug-molecules “under mild, neutral, and user-friendly conditions,” Levi and Li explained. With their method, the catalyst delivers a necessary but gentle nudge, coaxing phosphate to get to work.

There are, as always, limitations to the method: Sometimes, it needs coddling with tailored reaction conditions and substrates. Also, it requires the use of a fairly complicated catalyst by small-molecule standards, one that requires over 10 laboratory steps to synthesize.

Moving forward, the team plans to expand their method’s repertoire to include new types of sugars, especially the most stubborn of their ilk (mannosides, rhamnosides, and furanoses, for example). To share their (and nature’s) secret, they also intend to commercialize the catalysts, enabling widespread use. In the meantime, their method could create sugars that provide crucial biomedical benefit, like new vaccines and drugs to treat numerous human disorders and diseases, even cancers. It’s clear that, like synthetic chemists, we need sugar. Too much may damage our health, but the right amount could help heal us.

###

Media Contact
Caitlin McDermott-Murphy
[email protected]
617-496-2618

Original Source

https://chemistry.harvard.edu/news/natures-sweets

Related Journal Article

http://dx.doi.org/10.1073/pnas.18111861

Tags: BiochemistrycancerChemistry/Physics/Materials SciencesPharmaceutical ChemistryPharmaceutical SciencePharmaceutical SciencesPharmaceutical/Combinatorial ChemistryPolymer ChemistryVaccines
Share12Tweet8Share2ShareShareShare2

Related Posts

AI-Enhanced Multimodal Care for Pancreatic Cancer

October 18, 2025

Curcumin’s Role in Prostate Cancer Therapy

October 18, 2025

ESMO 2025: Belzutifan Demonstrates Tumor Reduction and Symptom Relief in Patients with Rare Neuroendocrine Tumors

October 18, 2025

New Treatment Combination Enhances Progression-Free Survival in Metastatic ER-Positive, HER2-Negative Breast Cancer

October 18, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1259 shares
    Share 503 Tweet 314
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    272 shares
    Share 109 Tweet 68
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    113 shares
    Share 45 Tweet 28
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Magnetic Susceptibility Unveils Neurodegeneration in Alpha-Synucleinopathies

Mapping Hippocampal Proteins in Alzheimer’s Disease Model

Genetic Control of Exosome Formation Linked to Obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.