• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Swarming behavior discovered in fish-dwelling parasite

Bioengineer by Bioengineer
December 16, 2018
in Immunology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A routine check revealed a previously undocumented behavior in the intestinal parasite

IMAGE

Credit: Sarah Poynton, Johns Hopkins Medicine


Johns Hopkins researchers have observed a previously unrecognized behavior in a single-celled parasite called Spironucleus vortens, which infects ornamental fish such as angelfish: The protozoans swarm.

Different species of Spironucleus infect other species of fish, amphibians, reptiles, birds and mammals, though this parasite family is not a threat to human health. One notorious member of the group is Spironucleus salmonicida, literally “salmon killer,” which can infect farmed salmon and turn their normally firm and tasty muscle to an unpalatable mush.

In a report published Nov. 23 in Journal of Eukaryotic Microbiology, the investigators suggest swarming behavior in Spironucleus vortens may have implications for better understanding the life cycle of the parasite, offer new avenues for control of infections, and may lead to the adoption of Spironucleus as a new laboratory model to study behavior in organisms that also use flagella — a microscopic, whiplike appendage — to swim. The movement of microswimmers, such as flagellated bacteria (one species of which causes urinary tract infections in humans) and flagellated protozoa, is currently of great interest to a variety of scientists.

Typically, the pear-shaped Spironucleus vortens parasites swim rapidly and individually in the lab, where researchers study them in drug development. However, when triggered to swarm, the flagellates accelerate and condense into a swarm measuring 200 to 900 micrometers across — or varying in size from half to twice the size of the period at the end of this sentence. The writhing spherical mass of organisms moves in a highly coordinated fashion. The swarms form and disperse spontaneously and unpredictably.

“The traveling swarm looks similar to a tumbleweed’s motion, moving in a single direction,” says Poynton. “And the individuals in the swarm remain in the group until the swarm disperses.”

The cohesive movement of the group indicates that there are interactions between the flagellates. Such behavior requires that organisms sense their surrounding conditions, interact with their neighbors and respond as a group — all behaviors that are akin to the swarming of insects, schooling of fish and flocking of birds.

“I have studied Spironucleus species for 20 years and have not seen this behavior described before,” says Sarah Poynton, Ph.D., associate professor of molecular and comparative pathobiology at the Johns Hopkins University School of Medicine, and lead author of the study.

The swarming, Poynton notes, is an intriguing behavior for these tiny flagellates because it may be a previously unappreciated contributing factor to the parasite’s life cycle and perhaps could be exploited for novel treatments to control the spread of this and similar infections.

###

VIDEO: Molecular and Comparative Pathobiology

Other researchers involved in the study include Lauren Ostrenga and Kenneth W. Witwer of the Department of Molecular and Comparative Pathobiology at the Johns Hopkins University School of Medicine.

Media Contact
Rachel Butch
[email protected]
410-955-8665

Related Journal Article

http://dx.doi.org/10.1111/jeu.12695

Tags: Infectious/Emerging DiseasesMedicine/Healthneurobiology
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    49 shares
    Share 20 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Institutional Factors Impacting Cervical Cancer Guideline Compliance

Bright Hybrid Excitons Boost Scalable X-ray Scintillators

Tau PET Positivity Varies by Age, Genetics, and Sex

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.