• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Elevated hormone flags liver problems in mice with methylmalonic acidemia

Bioengineer by Bioengineer
December 6, 2018
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study findings can immediately be applied to human patients with the disease

IMAGE

Credit: Patricia M. Zerfas, NIH Office of Research Services.


Researchers have discovered that a hormone, fibroblast growth factor 21 (FGF21), is extremely elevated in mice with liver disease that mimics the same condition in patients with methylmalonic acidemia (MMA), a serious genomic disorder. Based on this finding, medical teams treating patients with MMA will be able to measure FGF21 levels to predict how severely patients’ livers are affected and when to refer patients for liver transplants. The findings also might shed light on more common disorders such as fatty liver disease, obesity and diabetes by uncovering similarities in how MMA and these disorders affect energy metabolism and, more specifically, the function of mitochondria, the cells’ energy powerhouses. The study, conducted by researchers at the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health, was published December 6 in JCI Insight.

“Findings from mouse studies usually take years to translate into health care treatment, but not in this case,” said Charles P. Venditti, M.D., Ph.D., senior author and senior investigator in the NHGRI Medical Genomics and Metabolic Genetics Branch. “We can use this information today to ensure that patients with MMA are treated before they develop severe complications.”

MMA is a genomic disease that impairs a person’s ability to break down food proteins and certain fatty acids. The condition affects roughly 1 in 50,000 children born in the United States and can be detected through newborn screening. Children with MMA suffer from frequent life-threatening metabolic crises when they encounter a minor viral illness or other stressors like trauma, dietary imbalance or surgery. They must adhere to a special low-protein diet and take various supplements their entire lives.

The NHGRI team created a new mouse model and used it to discover key pathways that were affected during a fasting challenge to model a metabolic crisis in a patient with MMA. It enabled them to identify markers that they could then measure in MMA patients to assess the severity of the dysfunction in their mitochondria, specifically in the liver.

The MMA mice also allowed them to study the response to liver-directed gene therapy and to compare the findings in patients after liver transplant surgery. Liver transplants give patients with MMA a missing enzyme and ease some of the symptoms, but do not cure the disease. Kidney transplantation, on the other hand, is necessary when these patients reach terminal stages of renal failure, an expected chronic complication of MMA. Selecting which patients would benefit from a liver or combined liver/kidney transplant as opposed to just a kidney transplant is an important clinical decision for families and their clinicians.

“We found that having MMA, whether in a mouse or person, causes stress pathways to be chronically activated and can impair their ability to respond to acute stress,” said Irini Manoli, M.D., Ph.D., lead author and associate investigator in NHGRI’s Medical Genomics and Metabolic Genetics Branch. “Our new markers can accurately predict how effective a therapy, whether cellular or genomic, might be for the patients.”

The NHGRI team will use FGF21 measurements along with other tests presented in the study in the design of upcoming gene-based clinical trials that the lab has worked on for many years. The NHGRI team will next assess the role of FGF21 pathways in other symptoms seen in MMA. Since 2003, Dr. Venditti and his team have conducted research on patients with MMA and are following 200 patients with MMA, the world’s largest cohort. Their goals are to understand what defines the vulnerability to stress in MMA to better diagnose life-threatening metabolic crises that occur in patients, test new genomic therapies and find treatments that work for every patient.

NHGRI is the driving force for advancing genomics research at the National Institutes of Health. By conducting and funding world-class genomics research, training the next generation of genomics experts, and collaborating with diverse communities, NHGRI accelerates scientific and medical breakthroughs that improve human health. Learn more at genome.gov.

###

Read the study:

FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia

Media Contact
Jeannine Mjoseth
[email protected]
301-402-0911

Original Source

https://www.genome.gov/27572469/2018-news-feature-elevated-hormone-flags-liver-problems-in-mice-with-methylmalonic-acidemia-mma/

News source: https://scienmag.com/

Tags: BiologyCell BiologyGene TherapyGenesGeneticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Baicalein Reduces Neuronal Damage by Inhibiting Autophagy

November 29, 2025

Magnet-Assisted Bariatric Surgery: Evidence and Prospects

November 29, 2025

Ether-Lipids Fuel Hepatocellular Carcinoma via PPARα Deficiency

November 29, 2025

IgG Levels Predict Sepsis Outcomes and Treatment Benefits

November 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Baicalein Reduces Neuronal Damage by Inhibiting Autophagy

Magnet-Assisted Bariatric Surgery: Evidence and Prospects

Key SNPs Identified for Groundnut Kernel Quality

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.