• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

A novel molecule could spur new class of drugs for breast cancer

Bioengineer by Bioengineer
October 3, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Stevens Institute of Technology

Researchers at Stevens Institute of Technology and colleagues have designed and developed a new class of molecules that use a never-before-known mechanism that may halt or destroy breast cancer tumors, particularly for patients with drug-resistant or dangerously metastatic stages of the disease.

The molecule, developed by Abhishek Sharma, a chemistry professor at Stevens, could potentially add to the arsenal of drugs actively being developed to degrade or inhibit estrogen receptors, proteins inside cells that have been proven to be the single most important target in breast cancer therapy over the last 30 years.

"The unique benefit of our compounds is that this is a fundamentally different type of structure that was previously not known to degrade or inhibit estrogen receptors," said Sharma, whose work was recently published in the journal ACS Medicinal Chemistry Letters. "It's not a tweak of an existing drug; it works in a completely different way."

Several big pharma companies have invested heavily into developing such drugs, known as selective estrogen receptor degraders, or SERDs, due to the huge market potential and unmet clinical need. However, their approach has focused primarily on modifying the structure of SERDs that were originally discovered decades ago.

The problem: many breast cancer tumors become resistant to these drugs, necessitating more toxic chemotherapies to prevent the cancer from relapsing and progressing. SERDs are also difficult to formulate into pills, and treatment requires large, painful injections directly into a patient's muscles. More recently, drugs in clinical trials have been pulled because of side effects.

Sharma's team, including cancer biologists and physicians at Memorial Sloan Kettering Cancer Center in New York and at the University of Illinois, wanted to find a better way to treat breast cancer, which afflicts one in eight U.S. women and tens of millions worldwide.

They took a core substance already known to act as a good "homing device" for estrogen receptors and attached it to a series of experimental side-chain compounds known as degrons. Once the homing device attached to the estrogen receptor, the degrons degraded it by way of hijacking a cancer cell's protein-disposal machinery and routing it to the receptor (a protein).

The team went a step further, synthesizing several variations of the novel compound, each taking weeks to months to design and produce. They then tested more than a dozen of them to see how they interacted with the cancer cells' estrogen receptors. The new compounds were found to deliver a one-two punch, not only degrading estrogen receptors and inhibiting the signals that cue the cell to grow, but also blocking the hormone estrogen from binding to it. Importantly, the compounds also strongly inhibited the growth and proliferation of breast cancer cells.

"We consider these results to be very promising," said Sharma. "This is a novel molecular structure, and several analogs produced excellent early activity."

Next, the Stevens team will select several of the most promising candidates from the new compounds and develop them into more potent drug candidates to test in mouse models.

###

Media Contact

Thania Benios
[email protected]
917-930-5988

http://www.stevens.edu

Original Source

https://www.stevens.edu/news/novel-molecule-could-spur-new-class-drugs-breast-cancer http://dx.doi.org/10.1021/acsmedchemlett.8b00106

Share12Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.