• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists discover why some people with brain markers of Alzheimer’s have no dementia

Bioengineer by Bioengineer
August 16, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

GALVESTON, Texas – A new study from The University of Texas Medical Branch at Galveston has uncovered why some people that have brain markers of Alzheimer's never develop the classic dementia that others do. The study is now available in the Journal of Alzheimer's Disease.

Alzheimer's disease, the most common form of dementia, affects more than 5 million Americans. People suffering from Alzheimer's develop a buildup of two proteins that impair communications between nerve cells in the brain – plaques made of amyloid beta proteins and neurofibrillary tangles made of tau proteins.

Intriguingly, not all people with those signs of Alzheimer's show any cognitive decline during their lifetime. The question became, what sets these people apart from those with the same plaques and tangles that develop the signature dementia?

"In previous studies, we found that while the non-demented people with Alzheimer's neuropathology had amyloid plaques and neurofibrillary tangles just like the demented people did, the toxic amyloid beta and tau proteins did not accumulate at synapses, the point of communication between nerve cells," said Giulio Taglialatela, director of the Mitchell Center for Neurodegenerative Diseases. "When nerve cells can't communicate because of the buildup of these toxic proteins that disrupt synapse, thought and memory become impaired. The next key question was then what makes the synapse of these resilient individuals capable of rejecting the dysfunctional binding of amyloid beta and tau?"

In order to answer this question, the researchers used high-throughput electrophoresis and mass spectrometry to analyze the protein composition of synapses isolated from frozen brain tissue donated by people who had participated in brain aging studies and received annual neurological and neuropsychological evaluations during their lifetime. The participants were divided into three groups – those with Alzheimer's dementia, those with Alzheimer's brain features but no signs of dementia and those without any evidence of Alzheimer's.

The results showed that resilient individuals had a unique synaptic protein signature that set them apart from both demented AD patients and normal subjects with no AD pathology. Taglialatela said that this unique protein make-up may underscore the synaptic resistance to amyloid beta and tau, thus enabling these fortunate people to remain cognitively intact despite having Alzheimer's-like pathologies.

"We don't yet fully understand the exact mechanism(s) responsible for this protection," said Taglialatela. "Understanding such protective biological processes could reveal new targets for developing effective Alzheimer's treatments."

###

Other authors include UTMB's Olga Zolochevska, Nicole Bjorklund, John Wiktorowicz and Randall Woltjer from Oregon Health and Science University.

Media Contact

Donna Ramirez
[email protected]
409-772-8791
@utmbnews

http://www.utmb.edu

http://www.utmb.edu/newsroom/article11851.aspx

Share12Tweet7Share2ShareShareShare1

Related Posts

Neuronal Ceroid Lipofuscinosis: Mechanisms and Treatment Advances

October 12, 2025

Exploring Antioxidants’ Impact on Autism Treatment

October 12, 2025

New Global Burden of Disease Study Reveals Falling Mortality Rates Amid Rising Youth Deaths and Growing Health Inequities

October 12, 2025

Reevaluating Fetal Gene Hypothesis in Heart Dynamics

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1222 shares
    Share 488 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neuronal Ceroid Lipofuscinosis: Mechanisms and Treatment Advances

Exploring Antioxidants’ Impact on Autism Treatment

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.