• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

SwRI, UTSA researchers design minimally invasive medicinal implant

Bioengineer by Bioengineer
August 8, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SAN ANTONIO — Aug.8, 2018 — Southwest Research Institute (SwRI) and The University of Texas at San Antonio (UTSA) are developing a 3D printed implant that, when injected in a patient's body, could deliver a personalized dose of medicine to treat infections as well as ailments such as arthritis, cancer and AIDS. The project, led by Albert Zwiener of SwRI's Chemistry and Chemical Engineering Division and Dr. Lyle Hood of UTSA's College of Engineering, is supported by a $125,000 grant from the Connecting through Research Partnerships (Connect) program.

For a drug to be effective, patients must take a minimum amount, but not so much that it makes them ill or causes serious harm. As a result of those limitations, someone who needs frequent doses of a specific medicine either has to take a pill each day or visit a doctor for treatment. To remedy this, the SwRI-UTSA team is working to create an implantable device that can deliver a controlled, personalized dose of medicine over several weeks.

"The implant addresses a specific patient's illness in addition to their medical history and other health issues," Zwiener said. "We inject this non-invasive device into the body to deliver medicine over a significant period of time."

The design, which Zwiener and Hood created with UTSA graduate research assistant Priya Jain, incorporates complex geometries to personalize each device to an individual's ailment and takes advantage of the selective timing and release of the compound. The team will create the device with a specialized 3D printer at UTSA that can print biodegradable materials. This makes removal of the implant unnecessary, as it will simply dissolve inside the body when the treatment is complete.

The implant is also engineered to trigger localized immunotherapy for cancer treatments. Immunotherapy enlists the body to attack cancerous tumors. The SwRI-UTSA team believes that the device's localized treatment capabilities can trigger the body to destroy the invasive cancer.

"If clinically translated, this would allow for doctors and pharmacists to print specific dosages to meet patient's needs," Hood said. "In immunotherapy, most strategies employ systemic circulation through an IV line, much like chemotherapy. This can cause issues with immune reactions far away from the intended target. We hope that by delivering locally, we can keep acute effects constrained to the diseased region."

While the implant is ideal for cancer treatment, it's designed to be drug agnostic, meaning that it can work with any type of drug and could have a significant impact on a wide array of diseases and ailments.

###

The Connecting through Research Partnerships Program sponsored by the Office of the Vice President for Research, Economic Development, and Knowledge Enterprise at UTSA and the Executive Office at SwRI, is a grant opportunity offered to enhance greater scientific collaboration between the two institutions and to increase both UTSA's and SwRI's research-funding base with cross-campus collaborative programs.

For more information, visit https://www.swri.org/implant-development.

Media Contact

Joanna Carver
[email protected]
210-522-2073
@swri

http://www.swri.org

https://www.swri.org/press-release/swri-utsa-minimally-invasive-medicinal-implant

Share12Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.