• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Approaching an ideal amino acid synthesis using hydrogen

Bioengineer by Bioengineer
June 11, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Osaka University

Osaka – Amines are an essential part of our everyday lives; a fact supported by the number of bioactive molecules, including natural products, pharmaceuticals, and agrochemicals that contain amine motifs. Therefore, the development of green, sustainable, and waste-minimized approaches for the synthesis of amines and amino acids, using readily available catalysts and less toxic reagents, remains a significant challenge.

A group of researchers from Osaka University has now developed a practical and environmentally innocuous method for the functionalization of multiply substituted amines. Their results were published in the Journal of the American Chemical Society.

"Amines are present in many bioactive molecules, so being able to functionalize them using a benign catalyst and hydrogen is an attractive approach that will allow researchers to realize challenging molecular transformations," Sensuke Ogoshi, one of the corresponding authors, comments "Until now, this has been a significant challenge; however, our method has demonstrated highly efficient synthesis of a wide variety of amines including amino acids."

Their reductive alkylation method uses hydrogen directly, resulting in the generation of water as the only byproduct, which ensures that the method is atom-efficient and clean. In addition, their method can efficiently functionalize amines that have a wide range of substituents, including carboxyl, hydroxyl, additional amino, primary amide, and primary sulfonamide groups, which have proven to be challenging starting materials for previously reported procedures.

"The simple experimental procedure should broaden the scope of potential reaction substrates," said Yoichi Hoshimoto, another corresponding author. "Our results can contribute to a rapid and efficient expansion of bioactive amine libraries."

Greener synthetic methods should provide an opportunity for human society to more harmoniously coexist with the natural world. In this regard, the present environmentally benign process for direct functionalization of amino acids with hydrogen will pave the way for the future of chemical synthesis.

###

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

Original Source

http://resou.osaka-u.ac.jp/en/research/2018/20180606_1 http://dx.doi.org/10.1021/jacs.8b03626

Share12Tweet7Share2ShareShareShare1

Related Posts

Fostering Professional Identity in Medical Students Through Care

September 16, 2025

Remote Functional Performance Tests: Reliability for Fall-Prone Seniors

September 16, 2025

Unraveling pH’s Role in CHIKV nsP2 Protease Dynamics

September 16, 2025

Abdominal Muscle Quality and Quantity Impact Kids’ Heart Health

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Agroecosystem Sustainability Index Measures Environmental, Socioeconomic Health

Fostering Professional Identity in Medical Students Through Care

Nickel Boots Soybean Resilience Against Copper Stress

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.