• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Manipulating cells’ shapes could treat breast cancer

Bioengineer by Bioengineer
March 4, 2015
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Changing the shape of breast cancer cells could make the disease more sensitive to treatments – even driving the body’s own inflammatory response against a tumour – a new study shows.

Scientists at The Institute of Cancer Research, London, showed that the shape of a tumour cell is an important factor in determining its response to inflammatory molecules, which can either promote or inhibit cancer progression.

The research used robotic microscopy and automated algorithms, similar to those used by Facebook for facial recognition, to measure the shape of hundreds of thousands of different breast cancer cells.

The study, published today (Wednesday) in Molecular Systems Biology, was funded by Cancer Research UK, the Biotechnology and Biological Sciences Research Council and the Wellcome Trust.

The researchers were looking for a connection between cell shape and the activity of a key cancer protein, called NF-kappaB, which is switched on in response to inflammation and sends out pro-survival signals in cancer cells.

They measured a total of 77 shape and ‘context’ features – such as how close a cell was to its neighbours – in more than 307,000 cells. Features of shape they analysed included roundness, their length divided by their width, and measures of protrusions and ‘ruffliness’.

breast cancer

They discovered that they could divide the cells into two main groups, based on levels of NF-kappaB in their nuclei. ‘Mesenchymal-like’ cancer cells – which tended to be larger and more ‘ruffly’, with multiple sharp protrusions – had higher levels of NF-kappaB in their nuclei than ‘epithelial-like’ cells, which tend to be rounder and softer-edged.

Crucially, the study also showed that an inflammatory signal called TNFalpha strongly activated the NF-kappaB survival signal in mesenchymal-like cells, but only weakly did so in epithelial-like cells. Through detailed mathematical analysis, the researchers showed that cell shape influenced the flow of NF-kappaB into and out of cell nuclei in response to TNFalpha.

Study leader Dr Chris Bakal, Team Leader in Dynamic Cell Systems at The Institute of Cancer Research, London, said:

“Our study shows the crucial importance of a breast cancer cell’s shape in how it responds to inflammation – with certain shapes more likely to respond to the body’s immune system by activating pro-survival signals.

Changing cell shape – through mechanical, chemical or genetic means – could be a new way of assisting the body’s own inflammatory response to fight cancer.

“Interest in using the body’s own inflammatory response to fight cancer has been reinvigorated recently because of the promising results of immunotherapy. Our study further supports the need to explore the role of inflammation and cancer, in order to enhance treatments and the body’s own ability to eliminate cancer cells.”

Professor Paul Workman, Chief Executive of The Institute of Cancer Research, London, said:

“Cancer cells are in a battle against the body’s natural failsafe mechanisms that seek out and destroy them. This study underlines the importance of a cancer cell’s shape in helping to tip the balance in its favour, not only dodging an immune reaction but actually thriving in response to it. It also shows that manipulating cell shape could help tip the balance back against a tumour.”

Dr Alan Worsley, Cancer Research UK’s senior science information officer, said:

“This research shows how the shape of a cell and its environment may have a big effect on how that cell receives signals to grow and survive. These results highlight differences between how cancer cells behave in a petri dish compared with in a person, and we need to understand these differences when researching new treatments.”

Story Source:

The above story is based on materials provided by The Institute of Cancer Research.

Share13Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.