• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Who might benefit from immunotherapy? New study suggests possible marker

Bioengineer by Bioengineer
January 17, 2018
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ANN ARBOR, Michigan — While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

"This begs the question: Why does it work in those patients? We don't understand the mechanism at work very well," says Weiping Zou, M.D., Ph.D., the Charles B. de Nancrede Professor of Surgery, Pathology, Immunology and Biology at the University of Michigan.

Zou and colleagues offer a clue in a new study published in the Journal of Clinical Investigation.

Researchers studied mice with colon cancer, ovarian cancer, melanoma and lung cancer to understand how expression of the protein PD-L1 affects response to its blockade. This is a key target of immunotherapy drugs. The researchers found a key link in the antigen presenting cells – macrophages and dendritic cells found in the tumor microenvironment and in the nearby lymph nodes.

"The antigen presenting cells are the real guide. PD-L1 expression in these cells is responsible for response to therapy. This reshapes our understanding of checkpoint blockade therapies and the biomarkers that may predict clinical efficacy," Zou says.

Interestingly, his team first pinpointed the human cancer associated antigen presenting cells in 2003, in a paper published in Nature Medicine. That paper demonstrated dendritic cells express PD-L1 and blockade of PD-L1 on antigen presenting cells causes tumor regression in model systems. But this was when immunotherapy research was in its very early stages, before any of today's therapies were introduced.

When the Food and Drug Administration approved immunotherapy drugs designed to block PD-L1 and PD-1, the indication said patients' tumors must express PD-L1. But these therapies have worked in patients whose tumor cells did not express PD-L1. And they have failed in patients whose tumor cells do.

"Clearly, that's not a reliable biomarker," Zou says.

In the new study, researchers examined tissue samples from melanoma and ovarian cancer patients treated with immunotherapies. In both cancers, researchers found a link between the percent of antigen presenting cells expressing PD-L1 and an objective clinical response to treatment.

Currently, tumor tissue is tested broadly for PD-L1 expression. Without looking at individual cells within the tissue, it could mask the true source of PD-L1 expression. This study suggests a more complicated analysis looking for additional markers might be more informative in guiding treatment.

###

Additional authors: Heng Lin, Shuang Wei, Elaine M. Hurt, Michael D. Green, Lili Zhao, Linda Vatan, Wojciech Szeliga, Ronald Herbst, Paul W. Harms, Leslie A. Fecher, Pankaj Vats, Arul M. Chinnaiyan, Christopher D. Lao, Theodore S. Lawrence, Max S. Wicha, Junzo Hamanishi, Masaki Mandai, Ilona Kryczek

Funding: National Cancer Institute grants CA123088, CA099985, CA156685, CA171306, CA190176, CA193136, CA211016 and 5P30CA46592; MedImmune

Disclosure: Hurt is an employee of MedImmune. Wicha and Zou received sponsored research grants from MedImmune. Hamanishi and Mandai received support from Ono Pharmaceutical Company Japan and Bristol-Myers Squibb. Fecher received clinical trial funding from Bristol Myers Squibb.

Reference: Journal of Clinical Investigation, published online Jan. 16, 2018

Resources:

University of Michigan Comprehensive Cancer Center, http://www.mcancer.org

Michigan Medicine Cancer AnswerLine, 800-865-1125

Michigan Health Lab, http://www.MichiganHealthLab.org

Media Contact

Nicole Fawcett
[email protected]
734-764-2220
@umichmedicine

http://www.med.umich.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Stilbenes in Cancer Therapy: Molecular Targets, Progress

September 23, 2025
Volumetric Capacitance Transforms Organic Electrochemical Transistor Models

Volumetric Capacitance Transforms Organic Electrochemical Transistor Models

September 23, 2025

Metformin Combinations Show Promise in Lung Cancer

September 23, 2025

sRAGE Levels in Obese Adolescents with Metabolic Syndrome

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stilbenes in Cancer Therapy: Molecular Targets, Progress

Volumetric Capacitance Transforms Organic Electrochemical Transistor Models

Metformin Combinations Show Promise in Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.