• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bacterial toxins made in the gut

Bioengineer by Bioengineer
October 25, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

You get an infection, you are given penicillin — and then you could get hemorrhagic diarrhea. This rare but extremely unpleasant side reaction can be related to the enterotoxin tilivalline produced by a regular intestinal bacterium. Austrian scientists have now scrutinized the toxin's biosynthetic pathway and presented the results in the journal Angewandte Chemie. Their findings give important insights in the pathobiology of antibiotic side reactions and unveil the multifunctionality of bacterial toxins.

Some bacteria are sensitive to penicillin, others are not. While patients swallow antibiotics to destroy harmful microorganisms, their own intestinal microbiota suffers changes. If the introduced unbalance leads to an overgrowth of bacteria producing toxins themselves, intestinal and metabolic disorders can follow. In an interdisciplinary collaboration, Ellen Zechner of the University of Graz, Austria, and her colleagues have researched the role of penicillin-resistant Klebsiella oxytoca enterobacterium in antibiotic-associated hemorrhagic colitis (AAHC).

They first identified a metabolite tilivalline as a critical enterotoxin, which in higher doses damages the intestinal epithelium and can induce colitis. Surprisingly, tilivalline shares its chemical structure with a class of soil bacteria metabolites called pyrrolobenzodiazepines, which are already investigated and applied in clinical trials for their antitumor properties. After having identified the gene cluster for tilivalline synthesis, the scientists performed comprehensive biomolecular and molecular genetic experiments to track down the complete biosynthetic pathway of tilivalline.

Tilivalline itself lacks the DNA-damaging activity of its antitumor antibiotic relatives because the chemical site crucial for DNA interference is blocked. However, Zechner and colleagues found that the source of the blocking, an indole, only enters the biosynthetic pathway at its end. The tilivalline precursor without the indole, which was then named tilimycin, was shown to be a more potent cytotoxin than tilivalline. Surprisingly, the final addition of the indole to tilimycin occurs spontaneously, without the help of any enzyme. This means that "Klebsiella oxytoca is able to produce two pyrrolobenzodiazepines with distinct functionalities depending on the availability of indole", the scientists stated. Indole occurs naturally in the human gut.

Both outcomes, the elucidation of the biosynthetic pathway and the discovery of tilimycin as a stable intermediate metabolite, which is even more toxic to human cells, have important physiological and pharmacological implications. First, the better understanding of the AAHC pathogenesis may lead to new treatment schemes and strategies to avoid or just alleviate antibiotic side reactions. And second, the unusual Klebsiella pathway to the anticancerogenic structures can inspire scientists to develop new approaches for producing anticancer drugs.

###

About the Author

Ellen Zechner is a Professor at the Institute of Molecular Biosciences, University of Graz, Austria, and Director of the FWF-financed Doctoral Program in Molecular Enzymology. Her group investigates the mechanisms of bacterial cell-cell and cell-host communication with a focus on the molecular mechanisms contributing to the virulence of pathogens.

http://dk.uni-graz.at/index.php?item=supervisors_details&id=1

Media Contact

Mario Mueller
[email protected]

http://newsroom.wiley.com/

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3773/homepage/press/201745press.html

Related Journal Article

http://dx.doi.org/10.1002/anie.201707737

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.